早教吧作业答案频道 -->数学-->
在平面直角坐标系中,抛物线y=-x^2+bx+c的对称轴为直线x=3/2,与坐标轴交于A、B、C三点,A(-1,0)点F在y轴负半轴上,且F(0,-1).(1)求抛物线的解析式,并直接写出△BOC外接圆的圆心M的坐标.(2)点P
题目详情
在平面直角坐标系中,抛物线y=-x^2+bx+c的对称轴为直线x=3/2,与坐标轴交于A、B、C三点,A(-1,0)点F在y轴负半轴上,且F(0,-1).
(1)求抛物线的解析式,并直接写出△BOC外接圆的圆心M的坐标.
(2)点P、Q从B、F两点同时出发,均以每秒1个单位长度的速度沿FC、BO方向运动,设运动的时间为t(0
(1)求抛物线的解析式,并直接写出△BOC外接圆的圆心M的坐标.
(2)点P、Q从B、F两点同时出发,均以每秒1个单位长度的速度沿FC、BO方向运动,设运动的时间为t(0
▼优质解答
答案和解析
⑴ y=﹣x²;+3×+4,M﹙2,2﹚;
⑵ ∵S⊿OPQ=1/2×﹙4-t﹚×|OQ|,
S⊿OPM=1/2×﹙4-t﹚×2=4-t,
依题意1/2×﹙4-t﹚×|OQ|=1/3﹙4-t﹚,
∴|OQ|=2/3,
∴t=1/3,或t=5/3;
当t=1/3时,
S四边形OMPQ=11/3+11/9=44/9;
当t=5/3时,
S四边形OQMP=1/2×4×4-1/2×10/3×2-1/2×5/3×2
=8-10/3-5/3=3.
⑶∵AF²;=2,
EA²=﹙m+1﹚²+n²,
EF²=m²;+﹙n+1﹚²;
【1】若2+﹙m+1﹚²+n²=m²+﹙n+1﹚²,
化简后得n=m+1………①,
又E﹙m,n﹚在y=﹣x²+3x+4上,
∴n=﹣m²+3m+4……②,
联立①②解之,得m=3,m=﹣1﹙舍去﹚,n=4,
∴存在E﹙3,4﹚;
【2】若2+m²+﹙n+1﹚²;=﹙m+1﹚²+n²;,
参照【1】得,存在E﹙1+√6,√6﹚.
【3】显然﹙m+1﹚²+n²;+m²+﹙n+1﹚²;>2..不存在.
⑵ ∵S⊿OPQ=1/2×﹙4-t﹚×|OQ|,
S⊿OPM=1/2×﹙4-t﹚×2=4-t,
依题意1/2×﹙4-t﹚×|OQ|=1/3﹙4-t﹚,
∴|OQ|=2/3,
∴t=1/3,或t=5/3;
当t=1/3时,
S四边形OMPQ=11/3+11/9=44/9;
当t=5/3时,
S四边形OQMP=1/2×4×4-1/2×10/3×2-1/2×5/3×2
=8-10/3-5/3=3.
⑶∵AF²;=2,
EA²=﹙m+1﹚²+n²,
EF²=m²;+﹙n+1﹚²;
【1】若2+﹙m+1﹚²+n²=m²+﹙n+1﹚²,
化简后得n=m+1………①,
又E﹙m,n﹚在y=﹣x²+3x+4上,
∴n=﹣m²+3m+4……②,
联立①②解之,得m=3,m=﹣1﹙舍去﹚,n=4,
∴存在E﹙3,4﹚;
【2】若2+m²+﹙n+1﹚²;=﹙m+1﹚²+n²;,
参照【1】得,存在E﹙1+√6,√6﹚.
【3】显然﹙m+1﹚²+n²;+m²+﹙n+1﹚²;>2..不存在.
看了 在平面直角坐标系中,抛物线y...的网友还看了以下:
已知抛物线y=ax2+bx+c经过点A(-1,0),且经过直线y=x-3与坐标的两个交点B、C(1 2020-04-26 …
有兴趣可来看一看已知抛物线y=x^(x平方)+(m+1)x-1/4m^(m的平方)-1(m为实数) 2020-05-13 …
我们知道,经过原点的抛物线解析式可以是。(1)对于这样的抛物线:当顶点坐标为(1,1)时,a=;当 2020-05-13 …
坐标……已知点M(3a-8,a-1)分别根据下列条件求点M的坐标.(1)点M在第二、四象限角平分线 2020-05-14 …
在平面坐标系中 抛物线的解析式是y=1/4xx+1,点c的坐标为(-4.0),平行四边形oabc的 2020-05-16 …
求证:(1)A(n+1,n+1)-A(n,n)=n^2A(n-1,n-1);(2)C(m,n+1) 2020-06-03 …
已知点m(3a-2,a+6),分别根据下列条件求出m的坐标1.点m在y轴上2.点n的坐标为(3 2020-06-14 …
已知抛物线y=x^2-2(m-1)x+(m^2-7)与x轴有两个不同的交点.(1).求m的取值范围 2020-06-14 …
在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求 2020-06-21 …
在平面直角坐标系xOy中,抛物线y=x2-2mx+m2-m+2的顶点为D.线段AB的两个端点分别为 2020-07-30 …