早教吧作业答案频道 -->数学-->
证明(a^n+b^n)/2>=((a+b)/2)^n其中a>0,b>0,n是一个正整数.我只会数学归纳法
题目详情
证明(a^n+b^n)/2>=((a+b)/2)^n其中a>0,b>0,n是一个正整数.我只会数学归纳法
▼优质解答
答案和解析
方法一:构造函数证明(x^n+1^n)/2-((x+1)/2)^n>=0,x>0
方法二:利用柯西不等式的二元高次推广
(1+1)(1+1)(1+1)……(1+1)(a^n+b^n)>=(a+b)^n
从而2^(n-1)(a^n+b^n)>=(a+b)^n
也就是(a^n+b^n)/2>=(a+b)^n /2^n=((a+b)/2)^n)
从而(a^n+b^n)/2>=((a+b)/2)^n
方法三:设a=(x+y)/2
b=(x-y)/2
那么x>y>=0
等价于证明((x+y)/2)^n +((x-y)/2)^n>=2*x^n
根据二项式定理展开,显然成立,当且仅当y=0的时候成立
方法二:利用柯西不等式的二元高次推广
(1+1)(1+1)(1+1)……(1+1)(a^n+b^n)>=(a+b)^n
从而2^(n-1)(a^n+b^n)>=(a+b)^n
也就是(a^n+b^n)/2>=(a+b)^n /2^n=((a+b)/2)^n)
从而(a^n+b^n)/2>=((a+b)/2)^n
方法三:设a=(x+y)/2
b=(x-y)/2
那么x>y>=0
等价于证明((x+y)/2)^n +((x-y)/2)^n>=2*x^n
根据二项式定理展开,显然成立,当且仅当y=0的时候成立
看了 证明(a^n+b^n)/2>...的网友还看了以下:
证明两个正整数集的笛卡尔积可数即证明两个正整数集的笛卡尔积和正整数集的基数相同 2020-04-05 …
高等代数的证明题设A是实数域上的n级可逆矩阵,证明:A可以分解成A=TB,其中T是正交矩阵,B是上 2020-05-13 …
求助数学高手,用严格定义证明0.999…的极限为1高等数学证明题求证:lim0.999…=1(n→ 2020-05-16 …
已知a、b、c是一直角三角形的三边,c是斜边,且均为正整数,a为质数;求证明已知a、b、c是一直角 2020-05-17 …
证明:存在无穷多个正数a,使得n^4(n=1,2,3……)都是合数初等数论证明题.想了很久,都不知 2020-06-14 …
一道初中数学证明题(两小时内回答正确者加悬赏50)设素数从小到大排列为P1,P2,.,证明:对任意 2020-06-14 …
用数学归纳法证明:证明:对大于2的一切正整数n证明:对大于2的一切正整数n,下列不等式成立(1+2 2020-08-01 …
严格递增正整数数列{an},证明n趋于无穷时极限sin(an)存在已知正整数数列{an}为严格递增 2020-08-02 …
1.证明函数f(x)=-x^2在(负无穷,0)上是增函数,在(0,正无穷)上是减函数.2.判断函数f 2020-12-23 …
解答题已知数列an中,a1=0.5a(n+1)=sin(90度*an)(n为正整数)证明0<大神们帮 2020-12-23 …