早教吧作业答案频道 -->数学-->
1+1/3+1/6+1/10+……+1/2009×1004=()
题目详情
1+1/3+1/6+1/10+……+1/2009×1004=( )
▼优质解答
答案和解析
答:4016/2009
分析:先把每一项除以2,利用1/n(n+1)=1/n-1/(n+1)裂项分拆,再把整体乘2.
原式=2(1/2+1/6+1/12+1/20+……+1/(2009×2008)) *每项除以2再乘2*
=2(1/(1×2)+1/(2×3)+1/(3×4)+1/(4×5)+……+1/(2008×2009))
=2((1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/2008-1/2009)) *利用1/n(n+1)=1/n-1/(n+1)裂项分拆*
=2(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/2008-1/2009) *去括号*
=2(1-1/2009)
=4016/2009
分析:先把每一项除以2,利用1/n(n+1)=1/n-1/(n+1)裂项分拆,再把整体乘2.
原式=2(1/2+1/6+1/12+1/20+……+1/(2009×2008)) *每项除以2再乘2*
=2(1/(1×2)+1/(2×3)+1/(3×4)+1/(4×5)+……+1/(2008×2009))
=2((1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/2008-1/2009)) *利用1/n(n+1)=1/n-1/(n+1)裂项分拆*
=2(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+……+1/2008-1/2009) *去括号*
=2(1-1/2009)
=4016/2009
看了 1+1/3+1/6+1/10...的网友还看了以下: