早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}中,其前n项和为Sn,且n,an,Sn成等差数列(n∈N*).(1)求数列{an}的通项公式;(2)求Sn>57时n的取值范围.

题目详情
已知数列{an}中,其前n项和为Sn,且n,an,Sn成等差数列(n∈N*).
(1)求数列{an}的通项公式;
(2)求Sn>57时n的取值范围.
▼优质解答
答案和解析
(1)由已知,n,an,Sn成等差数列,所以Sn=2an-n,Sn-1=2an-1-(n-1),(n≥2)
两式相减得an=Sn-Sn-1=2an-2an-1-1,
即an=2an-1+1,两边加上1,得an+1=2(an-1+1),
所以数列{an+1}是等比数列,且公比q=2,又S1=2a1-1,∴a1=1,a1+1=2
数列{an+1}的通项公式为an+1=2•2n-1=2n,所以数列{an}的通项公式an=2n-1,
(2)由(1)知,Sn=2an-n=2n+1-2-n,所以Sn+1-Sn=2n+1-1>0,{Sn}为递增数列.
Sn>57时,2n+1-n>59,又当n=5时,26-5=59,所以n>5