早教吧作业答案频道 -->数学-->
设In=∫sinnxdx,证明:In=-1/n(sinn-1xcosx)+(n-1)/n〔In-2〕设中是sinx的n次方,证明中石sinx的n-1次
题目详情
设In=∫sinnxdx,证明: In= -1/n(sinn-1xcosx)+(n-1)/n〔In-2〕 设中是sinx的n次方,证明中石sinx的n-1次
▼优质解答
答案和解析
可以这样证明:
In=∫(sinx)^ndx
=-∫(sinx)^(n-1)dcosx
=-cosx*(sinx)^(n-1)+∫cosxd[(sinx)^(n-1)]
=-cosx*(sinx)^(n-1)+(n-1)∫cosx*(sinx)^(n-2)*cosxdx
=-cosx*(sinx)^(n-1)+(n-1)∫(cosx)^2*(sinx)^(n-2)dx
=-cosx*(sinx)^(n-1)+(n-1)∫[(sinx)^(n-2)-(sinx)^n]dx
=-cosx*(sinx)^(n-1)+(n-1)l(n-2)-(n-1)ln
移向得
nln=-cosx*(sinx)^(n-1)+(n-1) I(n-2)
即ln=-1/n(sinx)^(n-1)cosx+(n-1)/n I(n-2)
命题得证
In=∫(sinx)^ndx
=-∫(sinx)^(n-1)dcosx
=-cosx*(sinx)^(n-1)+∫cosxd[(sinx)^(n-1)]
=-cosx*(sinx)^(n-1)+(n-1)∫cosx*(sinx)^(n-2)*cosxdx
=-cosx*(sinx)^(n-1)+(n-1)∫(cosx)^2*(sinx)^(n-2)dx
=-cosx*(sinx)^(n-1)+(n-1)∫[(sinx)^(n-2)-(sinx)^n]dx
=-cosx*(sinx)^(n-1)+(n-1)l(n-2)-(n-1)ln
移向得
nln=-cosx*(sinx)^(n-1)+(n-1) I(n-2)
即ln=-1/n(sinx)^(n-1)cosx+(n-1)/n I(n-2)
命题得证
看了 设In=∫sinnxdx,证...的网友还看了以下: