早教吧 育儿知识 作业答案 考试题库 百科 知识分享

正项数列{an}中,a1=4,其前n项和Sn满足:Sn2-(an+1+n-1)Sn-(an+1+n)=0.(Ⅰ)求an与Sn;(Ⅱ)令bn=2n−1+1(3n−2)an,数列{bn2}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<512.

题目详情
正项数列{an}中,a1=4,其前n项和Sn满足:Sn2-(an+1+n-1)Sn-(an+1+n)=0.
(Ⅰ)求an与Sn
(Ⅱ)令bn=
2n−1+1
(3n−2)an
,数列{bn2}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn
5
12
▼优质解答
答案和解析
(本小题满分14分)
(Ⅰ)∵Sn2-(an+1+n-1)Sn-(an+1+n)=0,
∴[Sn-(an+1+n)](Sn+1)=0.
∵{an}是正项数列,∴Sn>0,Sn=an+1+n.
∴当n≥2时,an=Sn-Sn-1=an+1+n-an-(n-1).
∴an+1=2an-1,an+1-1=2(an-1),(n≥2),…(4分)
又∵a1=S1=a2+1,a1=4,∴a2=3,
an−1=(a2−1)•2n−2,
∴an=2n-1+1,n≥2,
综上,数列{an}的通项an=
4,n=1
2n−1+1,n≥2

当n=1时,Sn=4;
当n≥2时,Sn=4+(2+22+23+…+2n-1)+n-1
=4+
2(1−2n−1)
1−2
+n-1
=2n+n+1,
当n=1时也成立,
∴Sn=2n+n+1.…(7分)
(Ⅱ)证明:∵an=
4,n=1
2n−1+1,n≥2
,bn=
2n−1+1
(3n−2)an

b1=
1
2
,bn=
1
3n−2
,(n≥2),…(9分)
则当k≥2时,有bk2=
1
(3k−2)2
1
(3k−4)(3k−1)
=
作业帮用户 2017-09-26