早教吧 育儿知识 作业答案 考试题库 百科 知识分享

数列前n项和12+22+32+42+52+…+n2(详细过程)题中(^)是次方

题目详情
数列前n项和12+22+32+42+52+…+n2(详细过程)
题中(^)是次方
▼优质解答
答案和解析
1²+2²+3²+……+n²=1/6·n(n+1)(2n+1)
证明如下:
不妨设1²+2²+3²+……+n²=S
利用恒等式(n+1)³=n³+3n²+3n+1,得:
(n+1)³-n³=3n²+3n+1
n³-(n-1)³=3(n-1)²+3(n-1)+1
………………………………
3³-2³=3·2²+3·2+1
2³-1³=3·1²+3·1+1
将这n个式子两端分别相加,得:
(n+1)³-1=3(1²+2²+3²+……+n²)+3(1+2+3+……+n)+n
由于1+2+3+4+……+n=n(n+1)/2
代入上式,得:
n³+3n²+3n=3S+3/2×n(n+1)+n
整理后得S=1/6·n(n+1)(2n+1)
即1²+2²+3²+……+n²=1/6·n(n+1)(2n+1)