早教吧作业答案频道 -->其他-->
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8,其中m为参数,且满足m≤5.(1)若m=2,写出函数g(x)的单调区间(无需证明);(2)若方程f(x)=2|m|在x∈[-2,+∞)上有唯一解,求实数m的取
题目详情
已知函数f(x)=2|x-m|和函数g(x)=x|x-m|+2m-8,其中m为参数,且满足m≤5.
(1)若m=2,写出函数g(x)的单调区间(无需证明);
(2)若方程f(x)=2|m|在x∈[-2,+∞)上有唯一解,求实数m的取值范围;
(3)若对任意x1∈[4,+∞),存在x2∈(-∞,4],使得f(x2)=g(x1)成立,求实数m的取值范围.
(1)若m=2,写出函数g(x)的单调区间(无需证明);
(2)若方程f(x)=2|m|在x∈[-2,+∞)上有唯一解,求实数m的取值范围;
(3)若对任意x1∈[4,+∞),存在x2∈(-∞,4],使得f(x2)=g(x1)成立,求实数m的取值范围.
▼优质解答
答案和解析
(1)m=2时,g(x)=
,
∴函数g(x)的单调增区间为(-∞,1),(2,+∞),
单调减区间为(1,2).
(2)由f(x)=2|m|在x∈[-2,+∞)上有唯一解,
得|x-m|=|m|在x∈[-2,+∞)上有唯一解.
即(x-m)2=m2,解得x=0或x=2m,
由题意知2m=0或2m<-2,
即m<-1或m=0.
综上,m的取值范围是m<-1或m=0.
(3)由题意可知g(x)的值域应是f(x)的值域的子集.
∵f(x)=
①m≤4时,f(x)在(-∞,m)上单调递减,[m,4]上单调递增,
∴f(x)≥f(m)=1.
g(x)在[4,+∞)上单调递增,
∴g(x)≥g(4)=8-2m,
∴8-2m≥1,即m≤
.
②当4<m≤5时,f(x)在(-∞,4]上单调递减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调递减,
[m,+∞)上单调递增,
故g(x)≥g(m)=2m-8
∴2m-4≤2m-8,
解得5≤m≤6.
又4<m≤5,
∴m=5
综上,m的取值范围是(−∞,
]∪{5}
|
∴函数g(x)的单调增区间为(-∞,1),(2,+∞),
单调减区间为(1,2).
(2)由f(x)=2|m|在x∈[-2,+∞)上有唯一解,
得|x-m|=|m|在x∈[-2,+∞)上有唯一解.
即(x-m)2=m2,解得x=0或x=2m,
由题意知2m=0或2m<-2,
即m<-1或m=0.
综上,m的取值范围是m<-1或m=0.
(3)由题意可知g(x)的值域应是f(x)的值域的子集.
∵f(x)=
|
①m≤4时,f(x)在(-∞,m)上单调递减,[m,4]上单调递增,
∴f(x)≥f(m)=1.
g(x)在[4,+∞)上单调递增,
∴g(x)≥g(4)=8-2m,
∴8-2m≥1,即m≤
7 |
2 |
②当4<m≤5时,f(x)在(-∞,4]上单调递减,
故f(x)≥f(4)=2m-4,g(x)在[4,m]上单调递减,
[m,+∞)上单调递增,
故g(x)≥g(m)=2m-8
∴2m-4≤2m-8,
解得5≤m≤6.
又4<m≤5,
∴m=5
综上,m的取值范围是(−∞,
7 |
2 |
看了 已知函数f(x)=2|x-m...的网友还看了以下:
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2 2020-05-13 …
线性规划数学题:实数x,y满足x-y+1≤0,x>0,y≤2,若实数x,y满足x-y+1≤0,x> 2020-05-16 …
如果实数x,y满足等式(x-3)^2+(y-3)^2=6,求y/x和x+y的最值,本人很笨的,.. 2020-06-26 …
求解(4X-10Y)^2=√2÷6;(1)实数x,y满足(X-2Y+1)^2+√X-1+∣2X-Y 2020-07-20 …
高中数学,填空.在线等1.已知正实数x,Y满足x+y+8=xy,若满足条件x,y都有不等式(x+y) 2020-11-03 …
如果实数x,y满足条件(看补充)x-y+1≥0如果实数x,y满足条件y+1≥0,那么4^x*(1/2 2020-11-19 …
1.已知集合A={x│x≤-1,或x≥2},B={x│4x+p>0},且满足B真包含于A,则实数P的 2020-11-19 …
已知函数fx的定义域为R,对任意实数x,y满足f(x+y)=f(x)f(y)且f(x)>0,f(2) 2020-12-08 …
已知函数f(x)的定义域为(0,正无穷),当x大于1时,f(x)小于0,且对任意正实数x,y,满足f 2021-01-31 …
已知整数x,y满足√(x)+2√(y)=√(50),那么整数对(x,y)的个数是(已知整数x,y满足 2021-02-01 …