早教吧作业答案频道 -->数学-->
∫[f(x)/f'(x)-f^2(x)f"(x)/f'^3(x)]dx如题
题目详情
∫[f(x)/f'(x)-f^2(x)f"(x)/f'^3(x)]dx 如题
▼优质解答
答案和解析
[f(x)/f '(x)]'=[f '²(x)-f(x)f ''(x)]/f '²(x)
=1-f(x)f ''(x)/f '²(x)
因此题目中的被积函数为:
[f(x)/f'(x)-f^2(x)f"(x)/f'^3(x)]
=[f(x)/f '(x)][1-f(x)f ''(x)/f '²(x)]
=[f(x)/f '(x)][f(x)/f '(x)]'
因此:原式=∫ [f(x)/f '(x)][f(x)/f '(x)]' dx
=∫ [f(x)/f '(x)][f(x)/f '(x)]' dx
=∫ [f(x)/f '(x)] d[f(x)/f '(x)]
=(1/2)[f(x)/f '(x)]² + C
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
=1-f(x)f ''(x)/f '²(x)
因此题目中的被积函数为:
[f(x)/f'(x)-f^2(x)f"(x)/f'^3(x)]
=[f(x)/f '(x)][1-f(x)f ''(x)/f '²(x)]
=[f(x)/f '(x)][f(x)/f '(x)]'
因此:原式=∫ [f(x)/f '(x)][f(x)/f '(x)]' dx
=∫ [f(x)/f '(x)][f(x)/f '(x)]' dx
=∫ [f(x)/f '(x)] d[f(x)/f '(x)]
=(1/2)[f(x)/f '(x)]² + C
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
看了 ∫[f(x)/f'(x)-f...的网友还看了以下: