早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知f(π)=1f(x)具有二阶连续导数,且∫上限π,下限0(f(x)+f''(x))sinxdx=3求f(0)

题目详情
已知f(π)=1 f(x)具有二阶连续导数,且∫上限π,下限0 (f(x)+f''(x))sinxdx=3 求f(0)
▼优质解答
答案和解析
∫[f(x)+f''(x)]sinxdx
=∫f(x)sinxdx+∫f''(x)sinxdx
=-∫f(x)dcosx+∫sinxdf'(x)
=-f(x)cosx+∫f'(x)cosxdx+f'(x)sinx-∫f'(x)cosxdx
=-f(x)cosx+f(x)sinx
∫[0,π] (f(x)+f''(x))sinxdx
=-f(x)cosx+f(x)sinx|[0,π]
=f(π)
=1