早教吧 育儿知识 作业答案 考试题库 百科 知识分享

∫e^xcosxdx=∫e^xd(sinx)=e^xsinx-∫sinxe^xdx=e^xsinx+∫e^xd(cosx)=e^xsinx+e^xcosx-∫e^xcosxdx所以2∫e^xcosxdx=e^xsinx+e^xcosx∫e^xcosxdx=(e^xsinx+e^xcosx)/2+C问题是怎么把∫e^xcosxdx直接化成1/2*e^xsinx+e^xcosx,搞不懂,求详解

题目详情
∫e^xcosxdx
=∫e^xd(sinx)
=e^xsinx-∫sinxe^xdx
=e^xsinx+∫e^xd(cosx)
=e^xsinx+e^xcosx-∫e^xcosxdx
所以 2∫e^xcosxdx=e^xsinx+e^xcosx
∫e^xcosxdx=(e^xsinx+e^xcosx)/2 +C
问题是怎么把∫e^xcosxdx直接化成1/2*e^xsinx+e^xcosx,搞不懂,求详解
▼优质解答
答案和解析
这个.
根据上面的推导有∫e^xcosxdx=e^xsinx+e^xcosx-∫e^xcosxdx
那么移项2∫e^xcosxdx=e^xsinx+e^xcosx
因此∫e^xcosxdx=(e^xsinx+e^xcosx)/2 +C
说的很明白啊