早教吧作业答案频道 -->数学-->
y=(3x^2-1)/(x+1)e^(2/x)的斜渐近线
题目详情
y=(3x^2-1)/(x+1)e^(2/x)的斜渐近线
▼优质解答
答案和解析
设渐近线方程:y=kx+b
则k=lim(x→∞)[(3x²-1)/(x-1)][e^(2/x)]/x
=lim(x→∞)[(3x²-1)e^(2/x)]/[x(x-1)]
=lim(x→∞)[(3-1/x²)e^(2/x)]/(1-1/x)
=[(3-0)e^0]/(1-0)
=3
故b=lim(x→∞)(y-kx)
=lim(x→∞)[(3x²-1)e^(2/x)/(x+1)]-3x
=lim(x→∞)[(3x²-1)e^(2/x)-3x²-3x]/(x+1)
=lim(x→∞)[3x²[e^(2/x)-1]-3x-e^(2/x)]/(x+1)
=lim(x→∞){3x[e^(2/x)-1]-3-[e^(2/x)]/x}/(1+1/x)
=lim(x→∞){3x·2/x-3-[e^(2/x)]/x}/(1+1/x)
=lim(x→∞){6-3-[e^(2/x)]/x}/(1+1/x)
=3
故渐近线方程:y=3x+3
则k=lim(x→∞)[(3x²-1)/(x-1)][e^(2/x)]/x
=lim(x→∞)[(3x²-1)e^(2/x)]/[x(x-1)]
=lim(x→∞)[(3-1/x²)e^(2/x)]/(1-1/x)
=[(3-0)e^0]/(1-0)
=3
故b=lim(x→∞)(y-kx)
=lim(x→∞)[(3x²-1)e^(2/x)/(x+1)]-3x
=lim(x→∞)[(3x²-1)e^(2/x)-3x²-3x]/(x+1)
=lim(x→∞)[3x²[e^(2/x)-1]-3x-e^(2/x)]/(x+1)
=lim(x→∞){3x[e^(2/x)-1]-3-[e^(2/x)]/x}/(1+1/x)
=lim(x→∞){3x·2/x-3-[e^(2/x)]/x}/(1+1/x)
=lim(x→∞){6-3-[e^(2/x)]/x}/(1+1/x)
=3
故渐近线方程:y=3x+3
看了 y=(3x^2-1)/(x+...的网友还看了以下:
f(x)=ln根号下e^3x/e^3x+1,求f(0)的导数 2020-05-14 …
若函数f(x)=e^x.sinx,则此图像在点(4,f(4))处的切线的倾斜角为f(x)=e^x. 2020-05-16 …
limx->0(e^x+e^2+e^3)/3lim(x~0)((e^x+e^2x+e^3x)/3) 2020-05-17 …
3x-y+4=0和6x-2y-1=0的斜率都为3.怎样直观的看其斜率是多少呢? 2020-06-02 …
ln[(e^x+e^2x+e^3x)/3]'=[ln(e^x+e^2x+e^3x)+ln3]'=( 2020-06-04 …
求教可分离变量的微分方程求方程Y'+3Y=0的通解DY/DX=-3YDY/Y=-3DXLN{Y}= 2020-06-05 …
lim(x趋于0时)[(e^x+e^2x+e^3x+……e^nx)/n]^(1/x)的极限;我自己 2020-06-12 …
求(e^3x+e^x)/(e^4x-e^2x+1)的不定积分 2020-06-22 …
一个小物块冲上一个固定的粗糙斜面,经过斜面上A、B两点,到达斜面上最高点后返回时,又通过了B、A两 2020-06-23 …
一个小物块冲上一个固定的粗糙斜面,经过斜面上A、B两点,到达斜面上最高点后返回时,又通过了BA两点 2020-06-23 …