早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,正方形ABCD,G为BC延长线上一点,E为射线BC上一点,连接AE.(1)若E为BC的中点,将线段EA绕着点E顺时针旋转90°,得到线段EF,连接CF.①请补全图形;②求证:∠DCF=∠FCG;(2)若点E

题目详情
如图,正方形ABCD,G为BC延长线上一点,E为射线BC上一点,连接AE.
(1)若E为BC的中点,将线段EA绕着点E顺时针旋转90°,得到线段EF,连接CF.
①请补全图形;
②求证:∠DCF=∠FCG;
(2)若点E在BC的延长线上,过点E作AE的垂线交∠DCG的平分线于点M,判断AE与EM的数量关系并证明你的结论.
作业搜
▼优质解答
答案和解析
(1)①补全图形,如图所示.
作业搜
②证明:过F作FH⊥BG于H,连接EH,
作业搜
由已知得AE⊥EF,AE=EF.
在正方形ABCD中,
∵∠B=∠AEF=∠EHF=90°,
∴∠AEB+∠FEC=90°
∠AEB+∠BAE=90°
∴∠BAE=∠HEF
∴△ABE≌△EHF.
∴BE=FH,AB=EH,
∵E为BC中点,
∴BE=CE=CH=FH.
∴∠DCF=∠GCF=45°.
(2)证明:在BA延长线上取一点H,使BH=BE,连接EH. 
在正方形ABCD中,
作业搜
∵AB=BC,
∴HA=CE.
∵∠B=90°,
∴∠H=45°.
∵CM平分∠DCG,∠DCG=∠BCD=90°,
∴∠MCE=∠H=45°.
∵AD∥BG,
∴∠DAE=∠AEC.
∵∠AEM=∠HAD=90°,
∴∠HAE=∠CEM.
∴△HAE≌△CEM.
∴AE=EM.