早教吧作业答案频道 -->数学-->
如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=kx(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为.
题目详情
如图,矩形ABCD中,AB=2AD,点A(0,1),点C、D在反比例函数y=
(k>0)的图象上,AB与x轴的正半轴相交于点E,若E为AB的中点,则k的值为___.
k |
x |
▼优质解答
答案和解析
如图,作DF⊥y轴于F,过B点作x轴的平行线与过C点垂直与x轴的直线交于G,CG交x轴于K,作BH⊥x轴于H,
∵四边形ABCD是矩形,
∴∠BAD=90°,
∴∠DAF+∠OAE=90°,
∵∠AEO+∠OAE=90°,
∴∠DAF=∠AEO,
∵AB=2AD,E为AB的中点,
∴AD=AE,
在△ADF和△EAO中,
∴△ADF≌△EAO(AAS),
∴DF=OA=1,AF=OE,
∴D(1,k),
∴AF=k-1,
同理;△AOE≌△BHE,△ADF≌△CBG,
∴BH=BG=DF=OA=1,EH=CG=OE=AF=k-1,
∴OK=2(k-1)+1=2k-1,CK=k-2
∴C(2k-1,k-2),
∴(2k-1)(k-2)=1•k,
解得k1=
,k2=
,
∵k-1>0,
∴k=
故答案是:
.
∵四边形ABCD是矩形,
∴∠BAD=90°,
∴∠DAF+∠OAE=90°,
∵∠AEO+∠OAE=90°,
∴∠DAF=∠AEO,
∵AB=2AD,E为AB的中点,
∴AD=AE,
在△ADF和△EAO中,
|
∴△ADF≌△EAO(AAS),
∴DF=OA=1,AF=OE,
∴D(1,k),
∴AF=k-1,
同理;△AOE≌△BHE,△ADF≌△CBG,
∴BH=BG=DF=OA=1,EH=CG=OE=AF=k-1,
∴OK=2(k-1)+1=2k-1,CK=k-2
∴C(2k-1,k-2),
∴(2k-1)(k-2)=1•k,
解得k1=
3+
| ||
2 |
3-
| ||
2 |
∵k-1>0,
∴k=
3+
| ||
2 |
故答案是:
3+
| ||
2 |
看了 如图,矩形ABCD中,AB=...的网友还看了以下:
如图,抛物线y=-x^2+bx+c经过点A(1,0)和点B(0,5).(1)求此抛物线的解析式及顶 2020-05-16 …
如图,点A的坐标为(-2,0),点B在函数y=4/x(x>0)的图象上,BC⊥x轴于点C,△ABC 2020-05-16 …
三维空间内的坐标转换题设:三维空间任意3点(A,B,C).组成一个平面.另有1点(D)过此平面中心 2020-06-14 …
如图,在平面直角坐标系中,∠ACB=90°,点A,C的坐标分别为A(-12,0),C(4,0),s 2020-07-17 …
抛物线y=-x平方+3x+4与x轴交于点A(-1,0),点B(4,0),与y轴交于点C(0,4)( 2020-07-30 …
在平面直角坐标系中,下列说法错误的是()A.点A(-1,-3)在第四象限内\x05B.若x<0,y 2020-07-30 …
如图,长方形OABC中,O为平面直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5),点 2020-08-01 …
如图在平面直角坐标系xOy中点A的坐标为(a,0),点B的坐标为(0,b),其中a>0,b>0,以 2020-08-01 …
已知,如图所示,关于y=ax^2+x+c(a不等于0)与x轴交与点A(-2,0)点B(6,0),与y 2021-01-10 …
圆锥曲线提问已知动点P到点A(-2,0)与点B(2,0)的斜率之积为-1/4,点P的轨迹为曲线C1. 2021-01-11 …