如图,两个正方形ABCD和AEFG共顶点A,连BE,DG,CF,AE,BG,K,M分别为DG和C的中点,KA的延长线交BE于H,MN⊥BE于N.则下列结论:①BG=DE且BG⊥DE;②△ADG和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.
的中点,KA的延长线交BE于H,MN⊥BE于N.则下列结论:①BG=DE且BG⊥DE;②△ADG和△ABE的面积相等;③BN=EN,④四边形AKMN为平行四边形.其中正确的是( )
A、③④B、①②③
C、①②④D、①②③④
由两个正方形的性质易证△AED≌△AGB,
∴BG=DE,∠ADE=∠ABG,
∴可得BG与DE相交的角为90°,
∴BG⊥DE.①正确;
如图,延长AK,使AK=KQ,连接DQ、QG,
∴四边形ADQG是平行四边形;
作CW⊥BE于点W,FJ⊥BE于点J,
∴四边形CWJF是直角梯形;
∵AB=DA,AE=DQ,∠BAE=∠ADQ,
∴△ABE≌△DAQ,
∴∠ABE=∠DAQ,
∴∠ABE+∠BAH=∠DAQ+∠BAH=90°.
∴△ABH是直角三角形.
易证:△CWB≌△BHA,△EJF≌△AHE;
∴WB=AH,AH=EJ,
∴WB=EJ,
又WN=NJ,
∴WN-WB=NJ-EJ,
∴BN=NE,③正确;
∵MN是梯形WGFC的中位线,WB=BE=BH+HE,
∴MN=1/2(CW+FJ)=1/2WB=1/2(BH+HE)=1/2BE
易证:△ABE≌△DAQ(SAS)
∴AK=1/2AQ=1/2BE
∴MN∥AK且MN=AK;
四边形AKMN为平行四边形,④正确.
S△ABE=S△ADQ=S△ADG=1/2S▱ADQG,②正确.
所以,①②③④都正确;
故选D.
设A是n阶矩阵A^2=E,证明r(A+E)+r(A-E)=n,的一步证明过程不懂由A^2=E,得A 2020-05-14 …
设椭圆E:x²/a²+y²/1-a²=1的焦点在x轴上若椭圆E的焦距为1设椭圆E:x²/a²+设椭 2020-05-15 …
设A为n阶方阵,E为N阶单位矩阵,且A^2-A=2E,证明则r(2E-A)+r(E+A)=n设A为 2020-05-15 …
已知a+b+c=H a+b+e=J a+d+e=K b+c+d=M c+d+e=N 求a=?b=? 2020-05-16 …
用以下英文宇母填在上a,a,a,a,a,a,b,e,e,d,e,e,e,e,e,e,f,g,g用以 2020-06-24 …
A,B均为三阶可逆矩阵,且A^3=0,则A:E-A,E+A均不可逆?B:E-A不可逆但E+A可逆? 2020-07-20 …
高数导数问题.设f(x)=(e^x-e^a)g(x)在x=a处可导,则函数g(x)应该满足条件是? 2020-07-20 …
已知函数y=(e^x-a)^2+(e^(-x)-a)^2(a属于R,a不等于0),求y的最小值Y= 2020-07-21 …
如图所示,两个含有30°角的完全相同的三角板ABC和DEF沿直线l滑动,下列说法错误的是()A.四 2020-07-22 …
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则()A.E-A不可逆,E+A不可逆B.E-A不 2020-07-22 …