早教吧作业答案频道 -->数学-->
求证x+p+qcosx=0有且仅有一个实根,其中常数p,q满足0<q<1
题目详情
求证x+p+qcosx=0有且仅有一个实根,其中常数p,q满足0<q<1
▼优质解答
答案和解析
令f(x)=x+p+qcosx;
则可以看出,f(-∞)<0;f(∞)>0
则至少有一点,使得f(x)=0;即x+p+qcosx=0有一个实根;
又
f'(x)=1-psinx;0因此f'(x)>0;f(x)为单调递增函数
因此仅有一点,使得f(x)=0
因此
x+p+qcosx=0有且仅有一个实根
则可以看出,f(-∞)<0;f(∞)>0
则至少有一点,使得f(x)=0;即x+p+qcosx=0有一个实根;
又
f'(x)=1-psinx;0因此f'(x)>0;f(x)为单调递增函数
因此仅有一点,使得f(x)=0
因此
x+p+qcosx=0有且仅有一个实根
看了 求证x+p+qcosx=0有...的网友还看了以下:
一道有关函数单调性的问题已知f(x)的定义域为实数,且满足两个条件条件1对任意x,y属于实数有f(x 2020-03-30 …
已知实数t满足关系式loga(t/a^3)=loga(y/a^3)(a>0且a≠1)(1)令t=a 2020-04-26 …
若方程根号(1-x^2)=mx+1有且只有一个实根,求实数m的值,若方程有两个不等的实根,求m的范 2020-05-13 …
向量b与非零向量a共线的充要条件是有且只有一个实数λ,使得b=λa.证明充分性说法有两个:1有且只 2020-05-15 …
已知向量a=(√3sinωx,cosωx),b=(cosωx,-cosωx)函数f(x)=a·b+ 2020-05-23 …
关于命题和不等式的综合已知:p:方程x2+mx+1=0有两个正实根,q:对任意的实数x都有mx2+ 2020-06-02 …
已知函数f(x)=x3+3ax-1,a∈R.当a≤0时,请问:是否存在整数a的值,使方程飞f(x) 2020-06-05 …
已知函数f(x)=a^x(a>0,a≠1),反函数为f^-1(x)(1)若关于x的方程f^-1(k 2020-06-13 …
(1)证明方程xn+xn-1+…+x=1(n>1的整数),在区间(12,1)内有且仅有一个实根;( 2020-06-16 …
证明方程x=1/2*cosx有且仅有一个实根,使迭代过程xk+1=1/2cosxk对一切x0属于a 2020-07-31 …