早教吧作业答案频道 -->数学-->
求证x+p+qcosx=0有且仅有一个实根,其中常数p,q满足0<q<1
题目详情
求证x+p+qcosx=0有且仅有一个实根,其中常数p,q满足0<q<1
▼优质解答
答案和解析
令f(x)=x+p+qcosx;
则可以看出,f(-∞)<0;f(∞)>0
则至少有一点,使得f(x)=0;即x+p+qcosx=0有一个实根;
又
f'(x)=1-psinx;0因此f'(x)>0;f(x)为单调递增函数
因此仅有一点,使得f(x)=0
因此
x+p+qcosx=0有且仅有一个实根
则可以看出,f(-∞)<0;f(∞)>0
则至少有一点,使得f(x)=0;即x+p+qcosx=0有一个实根;
又
f'(x)=1-psinx;0因此f'(x)>0;f(x)为单调递增函数
因此仅有一点,使得f(x)=0
因此
x+p+qcosx=0有且仅有一个实根
看了 求证x+p+qcosx=0有...的网友还看了以下:
求证x+p+qcosx=0有且仅有一个实根,其中常数p,q满足0<q<1 2020-06-12 …
已知方程ax2+4x+b=0(a<0)的两实根为m,n,方程ax2+3x+b=0的两实根为p,q. 2020-07-12 …
设集合P={m|-1<m<0},Q={m∈R|mx2+4mx-4<0对任意实数x恒成立},则下列关 2020-07-21 …
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an 2020-07-30 …
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an 2020-07-30 …
等比数列{an}中,首项为a1,公比为q,则下列条件中,使{an}一定为递减数列的条件是()A.| 2020-07-30 …
数列{an}中,an>0,且{anan+1}是公比为q(q>0)的等比数列,满足anan+1+an 2020-07-30 …
等比数列{an}的公比为q,前n项的积为Tn,并且满足a1>1,a2009•a2010-1>0,(a 2020-12-23 …
如果方程x2−p+y2q=1(p<0,q<0)表示双曲线,那么下列椭圆中,与这个双曲线共焦点的是() 2021-01-23 …
若关于未知数x的方程x2+2px-q=0(p、q是实数)没有实数根,1求证:p+q<142写出若关于 2021-02-01 …