早教吧作业答案频道 -->数学-->
求证x+p+qcosx=0有且仅有一个实根,其中常数p,q满足0<q<1
题目详情
求证x+p+qcosx=0有且仅有一个实根,其中常数p,q满足0<q<1
▼优质解答
答案和解析
令f(x)=x+p+qcosx;
则可以看出,f(-∞)<0;f(∞)>0
则至少有一点,使得f(x)=0;即x+p+qcosx=0有一个实根;
又
f'(x)=1-psinx;0因此f'(x)>0;f(x)为单调递增函数
因此仅有一点,使得f(x)=0
因此
x+p+qcosx=0有且仅有一个实根
则可以看出,f(-∞)<0;f(∞)>0
则至少有一点,使得f(x)=0;即x+p+qcosx=0有一个实根;
又
f'(x)=1-psinx;0因此f'(x)>0;f(x)为单调递增函数
因此仅有一点,使得f(x)=0
因此
x+p+qcosx=0有且仅有一个实根
看了 求证x+p+qcosx=0有...的网友还看了以下:
以下与十进制数0.625等价.(A)二进制数0.101(B)二进制数0.11(C)十六进制数0.5( 2020-03-30 …
设f(x,y)在(0,0)处连续,limx,y→0f(x,y)-1ex2+y2-1=4,则()A. 2020-05-14 …
已知奇数f(x)的定义域为(-∞,0)U(0,+∞),且f(x)在(0,+∞)上是减函数,f(1) 2020-05-19 …
幂级数和函数s(0)=0.幂级数求和函数有个S(0)=0如果不是0会怎样运算,幂级数求和的时候会有 2020-07-31 …
大一新生,数列发散问题:下列数列发散的是()(A)1,0,1,0,……(B)1/2,0,1/4,大 2020-07-31 …
考研数学求助设函数f(x)具有二阶连续导数,且f(x)>0,f(0)'=0,则函数z=f(x)lnf 2020-11-01 …
一道高一关于函数的题目已知函数y=f(x)是定义在(0,+∞)的增函数,对于任意的x>0,y>0,都 2020-12-08 …
一个整数的因数中,最小的因数是1,最大的因数是它本身.整数包括0吧,0有因数吗?如果0有因数,那么最 2020-12-23 …
△=0,△<0时一元二次方程ax2+bx+c=0(a>0)的根根需要用字母代表出来△>0,△=0,△ 2020-12-27 …
无限循环小数化分数。。设0.7=X,有0.7=0.777…可在,10X-X=7.777……-0.77 2021-01-22 …