早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在Rt△ABC中,∠C=90°,AB=10,AC=8,点Q在AB上,且AQ=2,过Q做QR⊥AB,垂足为Q,QR交折线AC-CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB-BC-CA移

题目详情
在Rt△ABC中,∠C=90°,AB=10,AC=8,点Q在AB上,且AQ=2,过Q做QR⊥AB,垂足为Q,QR交折线AC-CB于R(如图1),当点Q以每秒2个单位向终点B移动时,点P同时从A出发,以每秒6个单位的速度沿AB-BC-CA移动,设移动时间为t秒(如图2).

(1)求△BCQ的面积S与t的函数关系式.
(2)t为何值时,QP∥AC?
(3)t为何值时,直线QR经过点P?
(4)当点P在AB上运动时,以PQ为边在AB上方所作的正方形PQMN在Rt△ABC内部,求此时t的取值范围.
▼优质解答
答案和解析
(1)过C作CD⊥AB于D点,如图所示:

∵AB=10,AQ=2+2t,
∴QB=AB-AQ=10-(2+2t)=8-2t,
在Rt△ABC中,AB=10,AC=8,
根据勾股定理得:BC=6,
1
2
AC•BC=
1
2
AB•CD,即
1
2
×6×8=
1
2
×10×CD,
∴CD=
24
5

则S△BCQ=
1
2
QB•CD=
12
5
(8-2t)=-
24
5
t+
96
5
(0≤t≤8);

(2)当PQ∥AC时,可得∠BPQ=∠C,∠BQP=∠A,
∴△BPQ∽△BCA,又BQ=8-2t,BP=6t-10,
BQ
BA
=
BP
BC
,即
8−2t
10
=
6t−10
6

整理得:6(8-2t)=10(6t-10),
解得:t=
37
18

则t=
37
18
时,QP∥AC;


(3)①当Q、P均在AB上时,AP=6t,AQ=2+2t,
可得:AP=AQ,即6t=2+2t,
解得:t=0.5s;
②当P在BC上时,P与R重合,如图所示:

∵∠PQB=∠ACB=90°,∠B=∠B,
∴△BPQ∽△BAC,
BP
AB
=
BQ
BC
,又BP=6t-10,AB=10,BQ=8-2t,BC=6,
6t−10
10
=
8−2t
6
,即6(6t-10)=10(8-2t),
解得:t=2.5s;
③当P在AC上不存在QR经过点P,
综上,当t=0.5s或2.5s时直线QR经过点P;

(4)当点P在点Q的左侧时,若点N落在AC上,如图所示:

∵AP=6t,AQ=2+2t,
∴PQ=AQ-AP=2+2t-6t=2-4t,
∵四边形PQMN是正方形,
∴PN=PQ=2-4t,
∵∠APN=∠ACB=90°,∠A=∠A,
∴△APN∽△ACB,
PN
BC
=
AP
AC
,即
2−4t
6
=
6t
8

解得:t=
4
17

当点P在点Q的右侧时,若
看了 在Rt△ABC中,∠C=90...的网友还看了以下: