早教吧作业答案频道 -->数学-->
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;(Ⅱ)求数列{an}的通项公式;(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明
题目详情
在数列{an}中,a1=1,a2=2,且an+1=(1+q)an-qan-1(n≥2,q≠0).
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
(Ⅰ)设bn=an+1-an(n∈N*),证明{bn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)若a3是a6与a9的等差中项,求q的值,并证明:对任意的n∈N*,an是an+3与an+6的等差中项.
▼优质解答
答案和解析
(Ⅰ)证明:由题设an+1=(1+q)an-qan-1(n≥2),得an+1-an=q(an-an-1),即bn=qbn-1,n≥2.
又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.
(Ⅱ)由(Ⅰ)a2-a1=1,a3-a2=q,
…
an-an-1=qn-2,(n≥2).
将以上各式相加,得an-a1=1+q+…+qn-2(n≥2).
所以当n≥2时,an=
上式对n=1显然成立.
(Ⅲ)由(Ⅱ),当q=1时,显然a3不是a6与a9的等差中项,故q≠1.
由a3-a6=a9-a3可得q5-q2=q2-q8,由q≠0得q3-1=1-q6,①
整理得(q3)2+q3-2=0,解得q3=-2或q3=1(舍去).于是q=−
.
另一方面,an−an+3=
=
(q3−1),an+6−an=
=
(1−q6).
由①可得an-an+3=an+6-an,n∈N*.
所以对任意的n∈N*,an是an+3与an+6的等差中项.
又b1=a2-a1=1,q≠0,所以{bn}是首项为1,公比为q的等比数列.
(Ⅱ)由(Ⅰ)a2-a1=1,a3-a2=q,
…
an-an-1=qn-2,(n≥2).
将以上各式相加,得an-a1=1+q+…+qn-2(n≥2).
所以当n≥2时,an=
|
上式对n=1显然成立.
(Ⅲ)由(Ⅱ),当q=1时,显然a3不是a6与a9的等差中项,故q≠1.
由a3-a6=a9-a3可得q5-q2=q2-q8,由q≠0得q3-1=1-q6,①
整理得(q3)2+q3-2=0,解得q3=-2或q3=1(舍去).于是q=−
3 | 2 |
另一方面,an−an+3=
qn+2−qn−1 |
1−q |
qn−1 |
1−q |
qn−1−qn+5 |
1−q |
qn−1 |
1−q |
由①可得an-an+3=an+6-an,n∈N*.
所以对任意的n∈N*,an是an+3与an+6的等差中项.
看了 在数列{an}中,a1=1,...的网友还看了以下:
哥德巴猜想 ,素数,函数 500分求一个 函数 f(x) 使得 对于 任何一个大于6的正整数 n 2020-05-14 …
已知数列an,bn中,a1=b1=1,且当n≥2时,an-nan-1=0,bn=2bn-1-已知数 2020-05-15 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
已知数列{an}的前n项和为Sn,a1=1,a2=3,s(n+1)=4Sn-3S(n-1),(n大 2020-07-09 …
若9^n+C1(n+1)+...+C(n-1)(n+1)*9+Cn(n+1)是11的倍数,则自然数 2020-07-09 …
数列an的前n项和记为sn,已知a1=1an+1=(n分之n+2)乘sn(n=1,2,3,...) 2020-07-21 …
已知数列an中,a1=1,an=(2n/n-1)an-1+n(n为大于等于2的正整数),且bn=a 2020-07-28 …
若n为合数,n|x^2-1,则gcd(x+1,n)|ngcd(x-1,n)|n且gcd(x+1,n 2020-07-30 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
自然数从1数到n,一共用了942个数字,n是几 2020-11-30 …