早教吧作业答案频道 -->数学-->
X/(Y+Z)+Y/(X+Z)+Z/(X+Y)=1,求X^2/(Y+Z)+Y^2/(X+Z)+Z^2/(X+Y)=
题目详情
X/(Y+Z)+Y/(X+Z)+Z/(X+Y)=1,求X^2/(Y+Z)+Y^2/(X+Z)+Z^2/(X+Y)=
▼优质解答
答案和解析
X/(Y+Z)+Y/(X+Z)+Z/(X+Y)=1
设x/(y+z)=a,y/(x+z)=b,z/(x+y)=c
∴a+b+c=1
x=a(y+z)
y=b(x+z)
z=c(x+y)
相加:x+x+z=(b+c)x+(a+c)y+(a+b)z
∴[1-(b+c)]x+[1-(a+c)]y+[1-(a+b)]z=0
∴ax+by+cz=0
即X^2/(Y+Z)+Y^2/(X+Z)+Z^2/(X+Y)=0
设x/(y+z)=a,y/(x+z)=b,z/(x+y)=c
∴a+b+c=1
x=a(y+z)
y=b(x+z)
z=c(x+y)
相加:x+x+z=(b+c)x+(a+c)y+(a+b)z
∴[1-(b+c)]x+[1-(a+c)]y+[1-(a+b)]z=0
∴ax+by+cz=0
即X^2/(Y+Z)+Y^2/(X+Z)+Z^2/(X+Y)=0
看了 X/(Y+Z)+Y/(X+Z...的网友还看了以下: