早教吧 育儿知识 作业答案 考试题库 百科 知识分享

关于x,y,z的方程组3x+2y+z=axy+2yz+3zx=6该方程组有实数解(x,y,z),求正实数a的最小值

题目详情
关于x,y,z的方程组3x+2y+z=a
xy+2yz+3zx=6
该方程组有实数解(x,y,z),求正实数a的最小值
▼优质解答
答案和解析

3x+2y=a-z.①
xy+2yz+3zx=6.②
由②得:xy+z(2y+3x)=6.③
①代入③,得:xy+z(a-z)=6,
即:(3x)(2y)=36-6z(a-z).④
由①④知,3x、2y是下面关于A的方程的两个根:
A^2-(a-z)A+[36-6z(a-z)]=0,
∴Δ=(a-z)^2-4[36-6z(a-z)]≥0,
整理得:23z^2-22az+(144-a^2)≤0.
由条件,存在实数z使上式成立,故
判别式(-22a)^2-4*23(144-a^2)≥0,
即:a^2≥23.
∴正实数a的最小值是√23.
看了 关于x,y,z的方程组3x+...的网友还看了以下: