早教吧作业答案频道 -->数学-->
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2012)(x+2013)=
题目详情
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2012)(x+2013)=
▼优质解答
答案和解析
1/x(x+1)+1/(x+1)(x+2)+1/(x+2)(x+3)+...+1/(x+2012)(x+2013)
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+.+1/(x+2012)-1/(x+2013)
=1/x-1/(x+2013)
=2013/(x(x+2013))
不懂可追问
满意请采纳
谢谢
=1/x-1/(x+1)+1/(x+1)-1/(x+2)+1/(x+2)-1/(x+3)+.+1/(x+2012)-1/(x+2013)
=1/x-1/(x+2013)
=2013/(x(x+2013))
不懂可追问
满意请采纳
谢谢
看了 1/x(x+1)+1/(x+...的网友还看了以下: