早教吧作业答案频道 -->数学-->
哪个天才来证明一下下面这三个命题1.若y=f(x)既关于直线x=a对称,又关于x=b(a≠b)对称,则y=f(x)一定是周期函数,且T=2|a-b|是它的一个周期2.若y=f(x)既关于直线x=a对称,又关于点(b,c)中心对称,则y
题目详情
哪个天才来证明一下 下面这三个命题
1.若y=f(x)既关于直线x=a对称,又关于x=b(a≠b)对称,则y=f(x)一定是周期函数,且T=2|a-b|是它的一个周期
2.若y=f(x)既关于直线x=a对称,又关于点(b,c)中心对称,则y=f(x)一定是周期函数,且T=4|a-b|是它的一个周期.
3.定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b)对称
1.若y=f(x)既关于直线x=a对称,又关于x=b(a≠b)对称,则y=f(x)一定是周期函数,且T=2|a-b|是它的一个周期
2.若y=f(x)既关于直线x=a对称,又关于点(b,c)中心对称,则y=f(x)一定是周期函数,且T=4|a-b|是它的一个周期.
3.定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b)对称
▼优质解答
答案和解析
1.
不妨设a>b;
f(x)关于x=a对称因此f(a+x)=f(a-x),同理f(b+x)=f(b-x);
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) (因为关于a对称)
= f(b-(x-a))
= f(b+(x-a)) (因为关于b对称)
= f(x-(a-b))
因此f(x)是周期函数,2(a-b)是它的一个周期
2.
不妨设a>b
关于x=a对称:f(a+x)=f(a-x)
关于(b,c)对称:f(b+x)+f(b-x)=2c .如果不理解的话画个图来看
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) = f(b-(x-a))
= 2c - f(b+(x-a))
= 2c - f(x-(a-b))
由x-(a-b)的任意性,变量替换:令t=x-(a-b):
得到 f(t+2(a-b)) = 2c - f(t)
因此 f(t+4(a-b)) = 2c - f(t+2(a-b)) = 2c - ( 2c - f(t) ) = f(t)
3.
这个好似很显然哦...
化一化的话可以化成:
令x=a+t
则 f(a+t) = 2b - f(a-t)
即 f(a+t) + f(a-t) = 2b
表示距离a距离相同的点(分别为a-t和a+t)的函数值刚好分布在b的两边的对称位置
这些题目实在没头绪的话,一个是要知道那些f(a+x)=f(a-x)这类函数关系和对称性的关系,还一个是最好对着图来想
不妨设a>b;
f(x)关于x=a对称因此f(a+x)=f(a-x),同理f(b+x)=f(b-x);
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) (因为关于a对称)
= f(b-(x-a))
= f(b+(x-a)) (因为关于b对称)
= f(x-(a-b))
因此f(x)是周期函数,2(a-b)是它的一个周期
2.
不妨设a>b
关于x=a对称:f(a+x)=f(a-x)
关于(b,c)对称:f(b+x)+f(b-x)=2c .如果不理解的话画个图来看
因此
f(x+(a-b)) = f(a+(x-b))
= f(a-(x-b)) = f(b-(x-a))
= 2c - f(b+(x-a))
= 2c - f(x-(a-b))
由x-(a-b)的任意性,变量替换:令t=x-(a-b):
得到 f(t+2(a-b)) = 2c - f(t)
因此 f(t+4(a-b)) = 2c - f(t+2(a-b)) = 2c - ( 2c - f(t) ) = f(t)
3.
这个好似很显然哦...
化一化的话可以化成:
令x=a+t
则 f(a+t) = 2b - f(a-t)
即 f(a+t) + f(a-t) = 2b
表示距离a距离相同的点(分别为a-t和a+t)的函数值刚好分布在b的两边的对称位置
这些题目实在没头绪的话,一个是要知道那些f(a+x)=f(a-x)这类函数关系和对称性的关系,还一个是最好对着图来想
看了 哪个天才来证明一下下面这三个...的网友还看了以下:
春去秋来,周而复始,许多植物从一颗种子开始,到结出累累硕果,让我们看到了植物奇妙的生命周期(如图所 2020-06-26 …
概率的定义问题:设Ω是一个集合,……,那么(Ω,F)称为可测空间.概率的定义问题:设Ω是一个集合, 2020-06-30 …
周代爵位分五级:公、侯、伯、子、男,侯爵之名来自职称,其余均来自人的尊称或家族亲称。甚至卿、大夫、 2020-07-01 …
图1是中学常见的几种物质之间的转化关系图(部分产物已略去).其中A、D、H均为金属单质,F俗称食盐 2020-07-05 …
南京市六年级学生周涛和妹妹回到家后,妹妹发现她的零花钱少了,怀疑哥哥拿去了,于是当面问哥哥,周涛称 2020-07-11 …
(理)如果f(x)在某个区间I内满足:对任意的x1、x2∈I都有[f(x1)+f(x2)]≥f() 2020-07-29 …
连续型随机变量-各种分布形式若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分, 2020-08-02 …
函数y=f(x),则f(x+1)-f(x)称为f(x)在x处的一阶差分,记作△y,对于△y在x处的一 2020-11-01 …
我想问一个数学原理的题目.f(x)与g(x)关于(a.0)对称是怎么推出来f(x+a)+g(-x+a 2020-12-28 …
(6分)阅读下列材料:材料一今日看来西周政治里显然有深厚的贵族色彩,而“共主”名义下的地方分权体制… 2020-12-29 …