早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=ex-x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).(Ⅰ)求函数f(x)的解析式;(Ⅱ)当x∈R时,求证:f(x)≥-x2+x.

题目详情
已知函数f(x)=ex-x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈R时,求证:f(x)≥-x2+x.
▼优质解答
答案和解析
(Ⅰ)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知
f(0)=1+a=0
f′(0)=1=b
a=-1
b=1
,f(x)=ex-x2-1.
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减;
当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增.
∴φ(x)min=φ(0)=0,从而f(x)≥-x2+x.