早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•苏州)如图,二次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,-3),点D在二次函数的图象上,CD∥AB,连

题目详情
(2014•苏州)如图,二次函数y=a(x2-2mx-3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,-3),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.
(1)用含m的代数式表示a;
(2)求证:
AD
AE
为定值;
(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.
▼优质解答
答案和解析
(1)将C(0,-3)代入二次函数y=a(x2-2mx-3m2),
则-3=a(0-0-3m2),
解得 a=
1
m2


(2)证明:如图1,过点D、E分别作x轴的垂线,垂足为M、N.

由a(x2-2mx-3m2)=0,
解得 x1=-m,x2=3m,
则 A(-m,0),B(3m,0).
∵CD∥AB,
∴D点的纵坐标为-3,
又∵D点在抛物线上,
∴将D点纵坐标代入抛物线方程得D点的坐标为(2m,-3).
∵AB平分∠DAE,
∴∠DAM=∠EAN,
∵∠DMA=∠ENA=90°,
∴△ADM∽△AEN.
AD
AE
=
AM
AN
=
DM
EN

设E坐标为(x,
1
m2
(x2−2mx−3m2)),
3
1
m2
(x2−2mx−3m2)
=
3m
x−(−m)

∴x=4m,
∴E(4m,5),
∵AM=AO+OM=m+2m=3m,AN=AO+ON=m+4m=5m,
AD
AE
=
AM
AN
=
3
5
,即为定值.

(3)如图2,记二次函数图象顶点为F,则F的坐标为(m,-4),过点F作FH⊥x轴于点H.
连接FC并延长,与x轴负半轴交于一点,此点即为所求的点G.

∵tan∠CGO=
OC
OG
,tan∠FGH=
HF
HG

OC
OG
=
HF
HG

∴OG=3m.
∵GF=
GH2+HF2
=
16m2+16
=4
作业搜用户 2016-12-09
看了 (2014•苏州)如图,二次...的网友还看了以下: