早教吧作业答案频道 -->数学-->
若a,b,c满足a+b+c=0,abc=8,则1/a+1/b+1/c的值是?
题目详情
若a,b,c满足a+b+c=0,abc=8,则1/a+1/b+1/c的值是?
▼优质解答
答案和解析
因为:a+b+c=0
所以:(a+b+c)²=a²+b²+c²+2ab+2bc+2ac
=0
即:2ab+2bc+2ac=-(a²+b²+c²)
于是:1/a+1/b+1/c
=bc/abc+ac/abc+ab/abc(先通分)
=(bc+ac+ab)/abc
=(bc+ac+ab)/8
=(2bc+2ac+2ab)/16
=-(a²+b²+c²)/16
=-(a/4)²-(b/4)²-(c/4)²
abc=8可知:a和b和c都不等于0,原式的值是小于0的.
所以:(a+b+c)²=a²+b²+c²+2ab+2bc+2ac
=0
即:2ab+2bc+2ac=-(a²+b²+c²)
于是:1/a+1/b+1/c
=bc/abc+ac/abc+ab/abc(先通分)
=(bc+ac+ab)/abc
=(bc+ac+ab)/8
=(2bc+2ac+2ab)/16
=-(a²+b²+c²)/16
=-(a/4)²-(b/4)²-(c/4)²
abc=8可知:a和b和c都不等于0,原式的值是小于0的.
看了 若a,b,c满足a+b+c=...的网友还看了以下: