早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,OA=5,AB=2.点E在线段OC上,作∠MEN=∠AOC,使∠MEN的一边始终经过点A,另一边交线段BC于点F,连接AF.(1)求抛

题目详情
如图,一条抛物线经过原点和点C(8,0),A、B是该抛物线上的两点,AB∥x轴,OA=5,AB=2.点E在线段OC上,作∠MEN=∠AOC,使∠MEN的一边始终经过点A,另一边交线段BC于点F,连接AF.
(1)求抛物线的解析式;
(2)当点F是BC的中点时,求点E的坐标;
(3)当△AEF是等腰三角形时,求点E的坐标.
▼优质解答
答案和解析
(1)如图,
∵该抛物线经过原点和点C(8,0),
∴设该抛物线的解析式为:y=ax(x-8)(a≠0).
∵点C(8,0),
∴该抛物线的对称轴是x=4.
∵AB=2,AB∥x轴,
∴设A(3,t),B(5,t),
又∵OA=5,
∴t=4,即A(3,4),B(5,4),
∴把点A的坐标代入解析式,得
4=3a×(3-8),解得a=-
4
15

∴该抛物线的解析式是:y=-
4
15
x(x-8)(或y=-
4
15
x2+
32
15
x);

(2)∵AB∥x轴,
∴根据抛物线的对称性知OA=CB=5,∠AOC=∠BCO,
∵点F是BC的中点,
∴CF=
5
2

∵∠MEN=∠AOC,即∠AEF=∠AOC,∠AEC=∠AEF+∠CEF=∠AOC+∠OAE,
∴∠CEF=∠OAE,
∴△AOE∽△ECF,
AO
CE
=
OE
CF
,即
5
8−OE
=
OE
5
2

解得,OE=
8−
14
2
,或OE=
8+
14
2

则E(
14
2
,0);

(3)①当AE=EF时,可证△AOE≌△ECF.
则OA=CE=5,
∴OE=3,则E(3,0);
②当AF=EF时,过点F作FK∥AO.
易证△ABF≌△FKE,求得OE=
23
6
,则E(
23
6
,0);
③当AE=AF时,在AO上取点Q,使得EQ=OE.
易证△ABF≌△EQA,则EQ=AB=2,
∴OE=2.则E(2,0);
综上所述,点E的坐标是:(3,0)、(
23
6
,0)或(2,0)时,△AEF是等腰三角形.