早教吧作业答案频道 -->其他-->
(2014•甘孜州)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.(1)判断DE与⊙O的位置关系,并说明理由;(2)求证:BC2=2CD•OE;(3)
题目详情
(2014•甘孜州)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若cos∠BAD=
,BE=
,求OE的长.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若cos∠BAD=
3 |
5 |
14 |
3 |
▼优质解答
答案和解析
(1)证明:连接OD,BD,
∵AB为圆O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为斜边BC的中点,
∴CE=DE=BE=
BC,
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD为圆的半径,
∴DE为圆O的切线;
(2)证明:∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴
=
,即BC2=AC•CD.
∴BC2=2CD•OE;
(3)∵cos∠BAD=
,
∴sin∠BAC=
=
,
又∵BE=
,E是BC的中点,即BC=
,
∴AC=
.
又∵AC=2OE,
∴OE=
AC=
.
∵AB为圆O的直径,
∴∠ADB=90°,
在Rt△BDC中,E为斜边BC的中点,
∴CE=DE=BE=
1 |
2 |
∴∠C=∠CDE,
∵OA=OD,
∴∠A=∠ADO,
∵∠ABC=90°,即∠C+∠A=90°,
∴∠ADO+∠CDE=90°,即∠ODE=90°,
∴DE⊥OD,又OD为圆的半径,
∴DE为圆O的切线;
(2)证明:∵E是BC的中点,O点是AB的中点,
∴OE是△ABC的中位线,
∴AC=2OE,
∵∠C=∠C,∠ABC=∠BDC,
∴△ABC∽△BDC,
∴
BC |
CD |
AC |
BC |
∴BC2=2CD•OE;
(3)∵cos∠BAD=
3 |
5 |
∴sin∠BAC=
BC |
AC |
4 |
5 |
又∵BE=
14 |
3 |
28 |
3 |
∴AC=
35 |
3 |
又∵AC=2OE,
∴OE=
1 |
2 |
35 |
6 |
看了 (2014•甘孜州)如图,在...的网友还看了以下:
lim(x->0)(1/x-1/e^x-1)我这种解法错在哪里?我的解法如下lim(x->0)(1 2020-05-15 …
limx->0(e^x+e^2+e^3)/3lim(x~0)((e^x+e^2x+e^3x)/3) 2020-05-17 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
怎么求电场的散度最终求得类似于divE=k/r^2的式子,并且k=0.意味着在r!=0时,E的散度 2020-06-02 …
一花样滑冰者,开始自传时,其动能为E0=1/2(J0)(ω0^2),然后她将手臂收回,转动惯量减少 2020-06-13 …
.已知f(x)=xlgx,那么f(x)A、在(0,e)上单调递增B、在(0,10)上单调递增C、在 2020-07-12 …
有关聚点的定义E属于R^n,x0∈R^n,若x0的任意邻域N(x0,δ)总有E中异于x0的点,则x 2020-07-31 …
e^rx为什么总是ay''+by'+cy=0的一个解?我们在推特征方程之时,老师说:你把y=e^r 2020-08-02 …
一个物理疑问书上说,由E=IR+Ir=U+Ir可得当电路断路时,I变为0,Ir也变成0,因此U=E≠ 2020-12-03 …
变化磁场激发的感应电场满足?如题A.▽·E=0▽×E=0B.▽·E=ρ/ε0▽×E=0C.▽·E=0 2020-12-27 …