早教吧 育儿知识 作业答案 考试题库 百科 知识分享

将奇数依顺序排列成如图所示的三角形数阵,从上到下称为行.图中数11为第3行、从左向右数的第2个数;数29为第4行、第6个数.那么,2003为第行、第个数.

题目详情
将奇数依顺序排列成如图所示的三角形数阵,从上到下称为行.图中数11为第3行、从左向右数的第2个数;数29为第4行、第6个数.那么,2003为第______行、第______个数.
▼优质解答
答案和解析
第1个奇数为1,第2个奇数为3,第3个奇数为5…,第k个奇数为2k-1,
前k个奇数之和为1+3+5+…+(2k-1)=k2
于是,在如图所示的三角形数阵中,前k行共有k2个奇数,前k-1行共有(k-1)2个奇数,
于是第k行第1个奇数为2【(k-1)2+1】-1=2(K-1)2+1.
现在312=961,322=1024,2×312<2×322+1,
故2003位于第32行上.
由于第32行上第1个数为2×312+1=1923,
1923~2003共有
2003−1923
2
+1=41个奇数,
因此,2003为第32行,第41个数.
故答案为32;41
看了 将奇数依顺序排列成如图所示的...的网友还看了以下: