早教吧作业答案频道 -->其他-->
(2014•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足BC=FC,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.(1)求证:AE⊥DE;(2)若tan∠CBA=3,AE=3,求AF
题目详情
(2014•绵阳)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足
=
,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.
(1)求证:AE⊥DE;
(2)若tan∠CBA=
,AE=3,求AF的长.
BC |
FC |
(1)求证:AE⊥DE;
(2)若tan∠CBA=
3 |
▼优质解答
答案和解析
(1)证明:连接OC,
∵OC=OA,
∴∠BAC=∠OCA,
∵
=
,
∴∠BAC=∠EAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵DE切⊙O于点C,
∴OC⊥DE,
∴AE⊥DE;
(2)∵AB是⊙O的直径,
∴△ABC是直角三角形,
∵tan∠CBA=
,
∴∠CBA=60°,
∴∠BAC=∠EAC=30°,
∵△AEC为直角三角形,AE=3,
∴AC=2
,
连接OF,
∵OF=OA,∠OAF=∠BAC+∠EAC=60°,
∴△OAF为等边三角形,
∴AF=OA=
AB,
在Rt△ACB中,AC=2
,tan∠CBA=
,
∴BC=2,
∴AB=4,
∴AF=2.
∵OC=OA,
∴∠BAC=∠OCA,
∵
BC |
FC |
∴∠BAC=∠EAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵DE切⊙O于点C,
∴OC⊥DE,
∴AE⊥DE;
(2)∵AB是⊙O的直径,
∴△ABC是直角三角形,
∵tan∠CBA=
3 |
∴∠CBA=60°,
∴∠BAC=∠EAC=30°,
∵△AEC为直角三角形,AE=3,
∴AC=2
3 |
连接OF,
∵OF=OA,∠OAF=∠BAC+∠EAC=60°,
∴△OAF为等边三角形,
∴AF=OA=
1 |
2 |
在Rt△ACB中,AC=2
3 |
3 |
∴BC=2,
∴AB=4,
∴AF=2.
看了 (2014•绵阳)如图,已知...的网友还看了以下:
证明:若f(x)在负无穷大到正无穷满足f(x)的导数=f(x)且f(0)=1,证明f(x)=e的x 2020-05-14 …
设定义在R上的函数f(x)对任意x1、x2满足f(x1+x2)=f(x1)f(x2),且f(x)在 2020-05-17 …
已知定义在R上恒不为0的函数y=f(x),当x>0时,满足f(x)>1,且对于任意的实数x,y都有 2020-06-02 …
函数与其自己的反函数复合后等于x,怎么证明呢?假设f是g的反函数,于是对定义域内的x,存在y使得, 2020-06-08 …
关于微积分设f(x),g(x)在[a,b]上连续,在(a,b)内可微,证明存在t∈(a,b),使f 2020-06-10 …
f(x)=x的平方+px+q,证明|f(1)|,|f(2)|f(3)|中至少有一个不小于二分之一 2020-06-27 …
令文法G[E]为:E→T|E+T|E-TT→F|T*F|T/FF→(E)|i证明E+T*F是它的一 2020-07-08 …
证明:如果函数f(x)在[a,b]上可导,且(f(x)导数的绝对值)小于等于M,则,[(f(b)- 2020-07-16 …
1、已知f(x)=3的x次方,求证:(1)、f(x)乘以f(y)=f(x+y)(2)、f(x)除以 2020-07-30 …
不动点的基本问题设函数f(x)在R上定义,把满足f(x*)=x*的点称为f(x)的不动点.证明:若 2020-07-30 …