早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知:△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.(1)当EF与斜边BC不相交时,请证明EF=BE+CF(如图1);(2)如图2,当EF与斜边BC这样相交时,其他条

题目详情
如图,已知:△ABC中,AB=AC,∠BAC=90°,分别过B,C向经过点A的直线EF作垂线,垂足为E,F.

(1)当EF与斜边BC不相交时,请证明EF=BE+CF(如图1);
(2)如图2,当EF与斜边BC这样相交时,其他条件不变,证明:EF=BE-CF;
(3)如图3,当EF与斜边BC这样相交时,猜想EF、BE、CF之间的关系,不必证明.
▼优质解答
答案和解析
(1)证明:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠EBA+∠EAB=90°,
∴∠CAF=∠EBA,
在△ABE和△CAF中,
∠BEA=∠AFC
∠EBA=∠FAC
AB=AC

∴△BEA≌△AFC,
∴EA=FC,BE=AF,
∴EF=EA+AF=BE+CF.

(2)证明:∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFE=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△ACF中,
∠EBA=∠FAC
∠BEA=∠CFA
AB=AC

∴△BEA≌△AFC,
∴EA=FC,BE=AF,
∵EF=AF-AE,
∴EF=BE-CF.

(3)EF=CF-BE,
理由是::∵BE⊥EA,CF⊥AF,
∴∠BAC=∠BEA=∠CFA=90°,
∴∠EAB+∠CAF=90°,∠ABE+∠EAB=90°,
∴∠CAF=∠ABE,
在△ABE和△ACF中,
∠EBA=∠FAC
∠BEA=∠CFA
AB=AC

∴△BEA≌△AFC,
∴EA=FC,BE=CF,
∵EF=EA-AF,
∴EF=CF-BE.