早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,等边△ABC中,D为BC边中点,CP是BC的延长线.按下列要求作图并回答问题:(要求:尺规作图,不写作法,保留作图痕迹)(1)作∠ACP的平分线CF;(2)作∠ADE=60°,且DE交CF于点E;(3

题目详情
如图,等边△ABC中,D为BC边中点,CP是BC的延长线.按下列要求作图并回答问题:(要求:尺规作图,不写作法,保留作图痕迹)
(1)作∠ACP的平分线CF;
(2)作∠ADE=60°,且DE交CF于点E;
(3)在(1),(2)的条件下,可判断AD与DE的数量关系是______;
请说明理由.
▼优质解答
答案和解析
(1)尺规作图,如图
(2)尺规作图,如图; 
(3)AD=DE.
理由如下:
解法一:如图,连接AE,
∵等边△ABC中,D为BC边中点,
∴BD=DC,∠ADB=∠ADC=90°,
∵∠B=∠ADE=60°,
∴∠BAD=∠EDC=30°,
∵∠ACP=120°,CE为∠ACP的平分线,
∴∠ACE=∠ECP=60°,
∴∠DEC=∠ECP-∠EDC=30°,
∴∠DEC=∠EDC=30°,
∴CE=CD=BD.                                 
在△ABD和△ACE中,
AB=AC
∠B=∠ACE=60°
DB=CE

∴△ABD≌△ACE(SAS),
∴AD=AE.
                      
解法二:如图,过点D作DM∥AC交AB于点P,
∵△ABC是等边三角形,
∴△BDM为等边三角形,BM=BD,∠BMD=∠BDM=60°.
∵AB=BC,
∴AB-BM=BC-BD,即AM=CD.
∵∠ADC为△ABD的外角,
∴∠ADC=∠BAD+∠B,
而∠ADC=∠EDC+∠ADE,
∠B=∠ADE=60°,
∴∠BAD=∠EDC.
∵∠ACP=120°,CE为∠ACP的平分线,
∴∠ACE=60°,
∴∠DCE=∠ACD+∠ACE=120°,
∴∠AMD=∠DCE=120°.
在△ADM和△DEC中,
∠DAM=∠EDC
AM=DC
∠AMD=∠DCE

∴△ADM≌△DEC(ASA),
∴AD=DE.