早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)如图1,已知∠EOF=120°,OM平分∠EOF,A是OM上一点,∠BAC=60°,且与OF、OE分别相交于点B、C,则有AB=AC;(2)如图2,在如上的(1)中,当∠BAC绕点A逆时针旋转使得点B落在OF的反向延长线

题目详情
(1)如图1,已知∠EOF=120°,OM平分∠EOF,A是OM上一点,∠BAC=60°,且与OF、OE分别相交于点B、C,则有AB=AC;
(2)如图2,在如上的(1)中,当∠BAC绕点A逆时针旋转使得点B落在OF的反向延长线上时,(1)中的结论是否还成立?若成立,给出证明;若不成立,说明理由;
(3)如图3,已知∠AOC=∠BOC=∠BAC=60°,求证:①△ABC是等边三角形; ②OC=OA+OB.
▼优质解答
答案和解析
(1)证明:过A作AG⊥OF于G,AH⊥OE于H,
则∠AHO=∠AGO=90°,
∵∠EOF=120°,
∴∠HAG=60°=∠BAC,
∴∠HAG-∠BAH=∠BAC-∠BAH,
∴∠BAG=∠CAH,
∵OM平分∠EOF,AG⊥OF,AH⊥OE,
∴AG=AH,
在△BAG和△CAH中,
∠AGB=∠AHC
AG=AH
∠BAG=∠CAH

∴△BAG≌△CAH(ASA),
∴AB=AC;

(2)结论还成立,
证明:过A作AG⊥OF于G,AH⊥OE于H,
与(1)证法类似根据ASA证△BAG≌△CAH(ASA),
则AB=AC;

(3)证明:①如图,∠FOA=180°-120°=60°,
∠FOC=60°+60°=120°,
即OM平分∠COF,
由(2)知:AC=AB,
∵∠CAB=60°,
∴△ABC是等边三角形;
②在OC上截取BO=ON,连接BN,
∵∠COB=60°,
∴△BON是等边三角形,
∴ON=OB,∠OBN=60°,
∵△ABC是等边三角形,
∴∠ABC=60°=∠NBO,
∴都减去∠ABN得:∠ABO=∠CBN,
在△AOB和△CNB中
BC=AB
∠CBN=∠OBA
BN=OB

∴△AOB≌△CNB(SAS),
∴NC=OA,
∴OC=ON+CN=OB+OA,
即OC=OA+OB.