早教吧作业答案频道 -->数学-->
证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+nb/2)sin[(n+1)b/2]/sin(b/2)
题目详情
证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+nb/2)sin[(n+1)b/2]/sin(b/2)
▼优质解答
答案和解析
[sina+sin(a+b)+sin(a+2b)+..+sin(a+nb)]sin(b/2)
=sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)
=(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)
=(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]
=sin(a+nb/2)sin(n+1)b/2
=sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)
=(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)
=(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]
=sin(a+nb/2)sin(n+1)b/2
看了 证明,sina+sin(a+...的网友还看了以下: