早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知三角形ABC的周长为1,并且sin2A+sin2B=4sinAsinB.1)证明:三角形ABC是直角三角形;2)求三角...已知三角形ABC的周长为1,并且sin2A+sin2B=4sinAsinB.1)证明:三角形ABC是直角三角形;2)求三角形ABC面积的

题目详情
已知三角形ABC的周长为1,并且sin2A+sin2B=4sinAsinB.1)证明:三角形ABC是直角三角形;2)求三角...
已知三角形ABC的周长为1,并且sin2A+sin2B=4sinAsinB.1)证明:三角形ABC是直角三角形;2)求三角形ABC面积的最大值
▼优质解答
答案和解析
1证明:
和差化积公式:
sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
所以等式左边可化为:
sin2A+sin2B
=2sin(A+B)cos(A-B)
=2sinCcos(A-B)
积化和差公式:
sinαsinβ=-[cos(α+β)-cos(α-β)]/2
所以等式右边可化为:
-2[cos(A+B)-cos(A-B)]
=2cosC+2cos(A-B)
所以:










2sinCcos(A-B)=2cosC+2cos(A-B)
(sinC-1)cos(A-B)-cosC=0
-(sinC/2-cosC/2)^2cos(A-B)-(cosC/2-sinC/2)(cosC/2+sinC/2)=0
(cosC,/2-sinC/2)[(sinC/2-cosC/2)cos(A-B)-(cosC/2+sinC/2)]=0
(cosC/2-sinC/2)[sinC/2((cos(A-B)-1)-cosC/2(cos(A-B)+1)]=0
在sinC/2((cos(A-B)-1)-cosC/2(cosC/2+1)中,
因为sinC/2>0,(cos(A-B)-1≤0
所以sinC/2((cos(A-B)-1)≤0,
因为cosC/2>0,(cosC/2+1)>0
所以cosC/2(cosC/2+1)>0
所以:sinC/2((cos(A-B)-1)-cosC/2(cosC/2+1)
看了 已知三角形ABC的周长为1,...的网友还看了以下: