早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知ab属于(0,π/2)且sin(a+2b)=7/5sina(1)求证:tan(a+b)=6tanb(2)若tana=3tanb,求a的值

题目详情
已知ab属于(0,π/2)且sin(a+2b)=7/5sina
(1)求证:tan(a+b)=6tanb
(2)若tana=3tanb,求a的值
▼优质解答
答案和解析
(1)
∵sin(a+2b)=7/5sina
即5sin[(a+b)+b]=7sin[(a+b)-b]
两边展开:
5[sin(a+b)cosb+cos(a+b)sinb]=7[sin(a+b)cosb-cos(a+b)sinb]
整理:2sin(a+b)cosb=12cos(a+b)sinb (*)
∵ab属于(0,π/2)
∴cosb≠0,cos(a+b)≠0
(*)两边同时除以cos(a+b)cosB
得tan(a+b)=6tanb
(2)
∵tan(a+b)=6tanb
∴(tana+tanb)/(1-tanatanb)=6tanb
∵tana=3tanb
∴4tanb/[1-3(tanb)^2]=6tanb
∵tanb>0
∴1-3(tanb)^2=2/3
∴( tanb)^2=1/9
b是锐角
∴tanb=1/3
∴tana=3tanb=1
∴a=π/4
看了 已知ab属于(0,π/2)且...的网友还看了以下: