早教吧作业答案频道 -->数学-->
tan(π/4+arctanx)=(1+x)/(1-x)为什么会成立?谁能帮我证明一下?
题目详情
tan(π/4+arctanx)=(1+x)/(1-x)为什么会成立?谁能帮我证明一下?
▼优质解答
答案和解析
tan(π/4+arctanx)
=(tan(π/4)+tan(arctanx))/(1-tan(π/4)*tan(arctanx))
=(1+x)/(1-x)
用到公式:
tan(x+y)=(tanx+tany)/(1-tanxtany)
tan(π/4)=1
tan(arctanx)=x
=(tan(π/4)+tan(arctanx))/(1-tan(π/4)*tan(arctanx))
=(1+x)/(1-x)
用到公式:
tan(x+y)=(tanx+tany)/(1-tanxtany)
tan(π/4)=1
tan(arctanx)=x
看了 tan(π/4+arctan...的网友还看了以下: