早教吧 育儿知识 作业答案 考试题库 百科 知识分享

一道定积分求sinx√(1+(cosx)^2)dx在0到π上的定积分~

题目详情
一道定积分
求sin x√(1+(cos x)^2)dx在0到π上的定积分~
▼优质解答
答案和解析
∫sin x√(1+(cos x)^2)dx
=-∫√(1+(cos x)^2)dcosx
令t=cosx
原式=-∫√(1+t^2)dt 上限是-1,下限是1
再令t=tanu (正切),则dt=(secu)^2 du
原式=-∫√(1+(tanu)^2)*(secu)^2 du 上限是-π/4,下限是π/4
=-∫(secu)^3 du
=-∫1/(cosu)^3 du
=-∫cosu/(cosu)^4 du
=-∫1/(1-(sinu)^2)^2 dsinu
再令sinu=y,上限是-√2/2,下限是√2/2
原式=-∫1/(1-y^2)^2 dy
=-1/4*∫[1/(1-y)^2+1/(1-y)+1/(1+y)+1/(1+y)^2] dy
=-1/4*[1/(1-y)-1/(1+y)+ln|(1-y)(1+y)|)]+C (C为常数)
=-1/4*[2y/(1-y^2)+ln|1-y^2|]+C
再把上限-√2/2,下限√2/2代进去
得到原定积分=-1/4*(-4√2)
=√2