早教吧 育儿知识 作业答案 考试题库 百科 知识分享

直线l的方程为:x+sinαy+1=0(α∈R),则其倾斜角的范围为.

题目详情
▼优质解答
答案和解析
设直线l的倾斜角为θ,
由直线l的方程为:x+sinαy+1=0(α∈R),
当α=kπ(k∈Z)时,直线l的斜率不存在,其倾斜角θ=
π
2

当α≠kπ时,可得tanθ=-
1
sinα

当0<sinα≤1时,
1
sinα
≥1,∴tanθ≤-1,此时
π
2
<θ≤
4

当-1≤sinα<0时,同理可得:
π
4
≤θ<
π
2

综上可得:其倾斜角的范围为[
π
4
4
].
故答案为:[
π
4
4
].
θ=
π
2
πππ222.
当α≠kπ时,可得tanθ=-
1
sinα

当0<sinα≤1时,
1
sinα
≥1,∴tanθ≤-1,此时
π
2
<θ≤
4

当-1≤sinα<0时,同理可得:
π
4
≤θ<
π
2

综上可得:其倾斜角的范围为[
π
4
4
].
故答案为:[
π
4
4
].
1
sinα
111sinαsinαsinα,
当0<sinα≤1时,
1
sinα
≥1,∴tanθ≤-1,此时
π
2
<θ≤
4

当-1≤sinα<0时,同理可得:
π
4
≤θ<
π
2

综上可得:其倾斜角的范围为[
π
4
4
].
故答案为:[
π
4
4
].
1
sinα
111sinαsinαsinα≥1,∴tanθ≤-1,此时
π
2
<θ≤
4

当-1≤sinα<0时,同理可得:
π
4
≤θ<
π
2

综上可得:其倾斜角的范围为[
π
4
4
].
故答案为:[
π
4
4
].
π
2
πππ222<θ≤
4
3π3π3π444.
当-1≤sinα<0时,同理可得:
π
4
≤θ<
π
2

综上可得:其倾斜角的范围为[
π
4
4
].
故答案为:[
π
4
4
].
π
4
πππ444≤θ<
π
2
πππ222.
综上可得:其倾斜角的范围为[
π
4
4
].
故答案为:[
π
4
4
].
[
π
4
πππ444,
4
3π3π3π444].
故答案为:[
π
4
4
].
[
π
4
πππ444,
4
3π3π3π444].