早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•绍兴模拟)如图,在平面直角坐标系中,A(1,0)、B(5,0)、C(6,3)、D(0,3),点P为线段CD上一点,且∠APB=45°,则点P的坐标为(3+7,3)或(3-7,3)(3+7,3)或(3-7,3).

题目详情
(2013•绍兴模拟)如图,在平面直角坐标系中,A(1,0)、B(5,0)、C(6,3)、D(0,3),点P为线段CD上一点,且∠APB=45°,则点P的坐标为
(3+
7
,3)或(3-
7
,3)
(3+
7
,3)或(3-
7
,3)
▼优质解答
答案和解析
作等腰直角三角形ABE,使得∠AEB=90°,过点E作MN⊥AB于M,交CD于N,
∴AM=BM=
1
2
AB,
∵∠APB=45°=
1
2
∠AEB,
∴点P在以E为圆心,AE长为半径的圆与CD的交点,
即PE=AE,
∵A(1,0)、B(5,0),
∴AB=4,
∴AE=AB•cos45°=
2
2
×4=2
2

∴PE=2
2
,EM=AE•sin45°=
2
2
×2
2
=2,
∵C(6,3)、D(0,3),
∴CD∥OB,CD=6,
∴MN⊥CD,
∵OD⊥CD,OD⊥OB,
∴四边形OMND是矩形,
∴DN=OM=OA+AM=1+
1
2
AB=1+2=3,MN=OD=3,
∴EN=MN-EM=3-2=1,
在Rt△PNE中,PN=
PE2−EN2
=
(2
2
)2−1
=
7

∴点P的坐标为:(3+
7
,3)或(3-
7
,3).
故答案为:(3+
7
,3)或(3-
7
,3).