早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设M={(x,y)|F(x,y)=0}为平面直角坐标系xOy内的点集,若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,则称点集M满足性质P.给出下列三个点集:①R={(x,y)|cosx-y=0};②S={

题目详情
设M={(x,y)|F(x,y)=0}为平面直角坐标系xOy内的点集,若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,则称点集M满足性质P.给出下列三个点集:
①R={(x,y)|cosx-y=0};
②S={(x,y)|lnx-y=0|;
③T={(x,y)|x2-y2=1}.
其中所有满足性质P的点集的序号是______.
▼优质解答
答案和解析
对于①,R={(x,y)|cosx-y=0};y=cosx,定义域是R,对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2<0,①满足点集M满足性质P.
对于②,S={(x,y)|lnx-y=0|;y=lnx的定义域{x|x>0},对于任意(x1,y1)∈M,不妨取(1,0),不存在(x2,y2)∈M,使得x1x2+y1y2<0,②不满足点集M满足性质P.
对于③,T={(x,y)|x2-y2=1}.图形是双曲线,对于任意(x1,y1)∈M,存在(x2,y2)∈M,x2与x1符号相反,即可使得x1x2+y1y2<0,③满足点集M满足性质P.
正确判断为①③.
故答案为:①③.