早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在平面直角坐标系中,点A的坐标为(7,0),点B的坐标为(3,4),(1)求经过O、A、B三点的抛物线解析式;(2)将线段AB绕A点顺时针旋转75°至AC,直接写出点C的坐标.(3)在y

题目详情
如图,在平面直角坐标系中,点A的坐标为(7,0),点B的坐标为(3,4),

(1)求经过O、A、B三点的抛物线解析式;
(2)将线段AB绕A点顺时针旋转75°至AC,直接写出点C的坐标.
(3)在y轴上找一点P,第一象限找一点Q,使得以O、B、Q、P为顶点的四边形是菱形,求出点Q的坐标;
(4)△OAB的边OB上有一动点M,过M作MN//OA交AB于N,将△BMN沿MN翻折得△DMN,设MN=x,△DMN与△OAB重叠部分的面积为y,求出y与x之间的函数关系式,并求出重叠部分面积的最大值.
▼优质解答
答案和解析
(1) ;(2)C ;(3)(3,9)和( );
(4)函数关系式为 ,当 时,y最大且最大值为


试题分析:(1)由点O(0,0)、A(7,0)、B(3,4)运用待定系数法求解即可;
(2)根据旋转的性质C结合图象特征求解即可;
(3)过B作BE⊥OA于E,则BE=4,OE=3.如图Ⅰ,分①若OB、OP为菱形一组邻边时,②若BO、BP为一组邻边时,③若OP、BP为一组邻边时,根据菱形的性质及勾股定理求解即可;
(4)依题得△OBA面积为28,当MN= 时,点D刚好在OA上,分①当0<x≤ 时,②当 <x<5时,根据相似三角形的性质及二次函数的性质求解即可.
(1)运用待定系数法,由点O(0,0)、A(7,0)、B(3,4)求得所以抛物线为
(2)C
(3)过B作BE⊥OA于E,则BE=4,OE=3.

如图Ⅰ,①若OB、OP为菱形一组邻边时,当P1在y轴正半轴时,BQ 1 ∥y轴且BQ 1 =OB=5,则Q 1 为(3,9);若P在y轴负半轴时,同理求得Q点为(3,-1),但不在第一象限,不予考虑;②若BO、BP为一组邻边时,相应的点Q在第二象限,不予考虑;③若OP、BP为一组邻边时,则BQ 2 ∥y轴,Q 2 在BE上,设BQ 2 =m,则OQ 2 =m,EQ 2 =4-m,由Rt△OCQ 2 列方程 ,解得 ,求得Q 2 为( );综上所述满足条件的Q点有(3,9)和( );
(4)依题得△OBA面积为28,当MN= 时,点D刚好在OA上,所以分两种情况考虑:
①当0<x≤ 时,△DMN≌△BMN,△BMN∽△BOA,而 ,计算得
时,y最大且最大值为
②当 <x<5时,连结BD交MN于F、交OA于G,DM交OA于H,DN交OA于I,

由△BMN∽△BOA求得DF=BF= ,FG=4- ,DG=DF-FG=
再由△DHI∽△DMN得 ,计算得HI=

配方得 ;当 时,y最大且最大值为
综上所述,函数关系式为 ,当
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号