早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知放在同一平面上的两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等.若AB=6,二面角P-BD-S的余弦值为13.(Ⅰ)求证:PB⊥

题目详情
如图,已知放在同一平面上的两个正三棱锥P-ABD、S-BCD(底面是正三角形且顶点在底面上的射影是底面正三角形的中心)的侧棱长都相等.若AB=6,二面角P-BD-S的余弦值为
1
3

(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求多面体SPABC的体积..
1
3

(Ⅰ)求证:PB⊥平面PAD;
(Ⅱ)求多面体SPABC的体积..
1
3
1133

▼优质解答
答案和解析
(Ⅰ)分别作出两个正三棱锥的高PN、SM,连接AC交BD于O,连接OP、OS
∵△ADB与△BCD都是正三角形
∴四边形ABCD是菱形且∠BCD=60°,可得AC、DB互相垂直平分
∵△PBD中,PB=PD,O为BD中点
∴PO⊥BD,
同理,SO⊥BD,可得∠POS为二面角P-BD-S的平面角
∵ON=
1
3
OA,OM=
1
3
OC∴MN=
1
3
AC
∵四边形ABCD是菱形且∠BCD=60°,
∴AC=
3
AB=6
3
⇒MN=
1
3
AC=2
3

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
1
3
111333OA,OM=
1
3
OC∴MN=
1
3
AC
∵四边形ABCD是菱形且∠BCD=60°,
∴AC=
3
AB=6
3
⇒MN=
1
3
AC=2
3

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
1
3
111333OC∴MN=
1
3
AC
∵四边形ABCD是菱形且∠BCD=60°,
∴AC=
3
AB=6
3
⇒MN=
1
3
AC=2
3

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
1
3
111333AC
∵四边形ABCD是菱形且∠BCD=60°,
∴AC=
3
AB=6
3
⇒MN=
1
3
AC=2
3

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
3
3
33AB=6
3
⇒MN=
1
3
AC=2
3

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
3
3
33⇒MN=
1
3
AC=2
3

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
1
3
111333AC=2
3

∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
3
3
33
∵正三棱锥P-ABD、S-BCD是两个全等的三棱锥
∴两条高PN、SM平行且相等
可得四边形PSMN是矩形,所以PS=MN=2
3

∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
3
3
33
∵两个正三棱锥的侧棱长都相等
∴等腰三角形OPS中,根据余弦定理得:cos∠POS=
OP2+OS2-PS2
2•OP•OS
=
1
3

可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
OP2+OS2-PS2
2•OP•OS
OP2+OS2-PS2OP2+OS2-PS2OP2+OS2-PS22+OS2-PS22-PS222•OP•OS2•OP•OS2•OP•OS=
1
3
111333
可得OP=OS=3
∵Rt△POB中,OB=
1
2
AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
OB=
1
2
111222AB=3
∴PB=
OB2+OP2
=3
2

在△PDB中,PB2+PD2=36=BD2
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
OB2+OP2
OB2+OP2
OB2+OP2OB2+OP22+OP22=3
2
2
22
在△PDB中,PB22+PD22=36=BD22
∴∠BPD=90°⇒BP⊥PD
同理可得:BP⊥PA,结合PA∩PD=P
∴PB⊥平面PAD
(Ⅱ)由(I)得PA=PB=3
2
,AN=
作业帮用户 2017-11-15 举报
3
2
2
22,AN=
作业帮用户 2017-11-15 举报
作业帮用户 2017-11-15 举报
作业帮用户作业帮用户 2017-11-152017-11-15 举报 举报
看了 如图,已知放在同一平面上的两...的网友还看了以下: