早教吧 育儿知识 作业答案 考试题库 百科 知识分享

先猜想1/1*4+1/4*7+...+1/(3n-2)(3n+1)的和,并用数归法证明

题目详情
先猜想1/1*4+1/4*7+...+1/(3n-2)(3n+1)的和,并用数归法证明
▼优质解答
答案和解析
1、先猜想S=1/1*4+1/4*7+...+1/(3n-2)(3n+1)=n/(3n+1)
2、证明:(1)当n=1,S=1/4
(2)假设n=k时,s=k/(3k+1)
当n=k+1时,S(k+1)=1/1*4+1/4*7+...+1/(3k-2)(3k+1)+1/(3(k+1)-2)(3(k+1)+1)=1/3*[1-1/4+1/4-1/7+1/7-1/10+...+1/(3k-2)-1/(3k+1)+1/(3(k+1)-2)-1/(3(k+1)+1)]=1/3*[1-1/(3(k+1)+1)]=3(k+1)/(3(k+1)+1) 则当n=k+1时,仍然成立.
(3)所以1/1*4+1/4*7+...+1/(3n-2)(3n+1)=n/(3n+1)