早教吧作业答案频道 -->其他-->
如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.(1)若AE=2,求EC的长;(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.
题目详情
如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.
(1)若AE=2,求EC的长;
(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.
(1)若AE=2,求EC的长;
(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.
▼优质解答
答案和解析
(1)如图,连接EF,
在正方形ABCD中,AB=AD,∠B=∠D,
在△ABE和△ADF中,
,
∴△ABE≌△ADF(SAS),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴EF=AE=2,
∵BE=DF,BC=CD,
∴BC-BE=CD-DF,
即CE=CF,
∴△CEF是等腰直角三角形,
∴EC=
EF=
×2=
;
(2)证明:∵∠AGC=120°,
∴∠AGF=180°-∠AGC=180°-120°=60°,
又∵△AEF是等边三角形,(已证)
∴∠AEF=60°,
∴点A、E、G、F四点共圆,
∴∠AGE=∠AFE=60°,
∴∠CGE=∠AGC-∠AGE=120°-60°=60°,
延长GE交AB的延长线于H,
∵AB∥CD,
∴∠H=∠CGE=60°,
∴∠H=∠AGF,
又∵∠GAF+∠EAG=∠EAF=60°,
∠HAE+∠EAG=∠GAB=60°,
∴∠GAF=∠HAE,
在△AFG和△AEH中,
,
∴△AFG≌△AEH(AAS),
∴AG=AH,FG=EH,
∵∠AGE=60°,
∴△AGH是等边三角形,
∵AH=GH=EG+EH=EG+FG,
即AG=EG+FG.
在正方形ABCD中,AB=AD,∠B=∠D,
在△ABE和△ADF中,
|
∴△ABE≌△ADF(SAS),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴EF=AE=2,
∵BE=DF,BC=CD,
∴BC-BE=CD-DF,
即CE=CF,
∴△CEF是等腰直角三角形,
∴EC=
| ||
2 |
| ||
2 |
2 |
(2)证明:∵∠AGC=120°,
∴∠AGF=180°-∠AGC=180°-120°=60°,
又∵△AEF是等边三角形,(已证)
∴∠AEF=60°,
∴点A、E、G、F四点共圆,
∴∠AGE=∠AFE=60°,
∴∠CGE=∠AGC-∠AGE=120°-60°=60°,
延长GE交AB的延长线于H,
∵AB∥CD,
∴∠H=∠CGE=60°,
∴∠H=∠AGF,
又∵∠GAF+∠EAG=∠EAF=60°,
∠HAE+∠EAG=∠GAB=60°,
∴∠GAF=∠HAE,
在△AFG和△AEH中,
|
∴△AFG≌△AEH(AAS),
∴AG=AH,FG=EH,
∵∠AGE=60°,
∴△AGH是等边三角形,
∵AH=GH=EG+EH=EG+FG,
即AG=EG+FG.
看了 如图,在正方形ABCD中,点...的网友还看了以下:
若a^2+b^2-2c^2=0,则直线ax+by+c=01,若a^2+b^2-2c^2=0,则直线 2020-05-23 …
填空:分式的约分和通分约分:-16b^2y^2/20ay^3=-1-x/x^2+2x+1=a^y- 2020-06-06 …
判断若a+b=0则a的绝对值=负b的绝对值若a的绝对值=7分之3b的绝对值=20分之9且b小于a求 2020-06-12 …
命题的逆否真假远命题设a.b∈R若ac^2>bc^2则a>b判断原命题逆命题否命题逆否命题的真假我 2020-08-01 …
1.若a=10,b=8,c=6,则a、b、2c的第四比例为,a、b的比例中项x=.2.若(2-x) 2020-08-03 …
几道判断题!若A=B则a/m=b/m若A=B,则a^2=b^2若A^2=B^2,则A=B若A+M=B 2020-11-08 …
1.若集合A={x|(a-1)x^2+2x+1=o}中只含有一个元素,求实数a2.已知集合A={1, 2020-12-07 …
1若x^2=1,则x=1;2若x^2=1,则它的解是x=1;3若x^2=1,则它的解是x=1或x=- 2020-12-13 …
判断下列命题的真假已知a,b,c,d∈R(1)若ac>bc,则a>b(2)若a>-b,则c-ab>c 2020-12-13 …
1.下列结论正确的是:A.若a>b,则a^2>b^2B.若a^2>b^2,则a>bC.若a>b,则a 2020-12-23 …