早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.(1)若AE=2,求EC的长;(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.

题目详情
如图,在正方形ABCD中,点E、点F分别在边BC、DC上,BE=DF,∠EAF=60°.
(1)若AE=2,求EC的长;
(2)若点G在DC上,且∠AGC=120°,求证:AG=EG+FG.
▼优质解答
答案和解析
(1)如图,连接EF,
在正方形ABCD中,AB=AD,∠B=∠D,
在△ABE和△ADF中,
AB=AD
∠B=∠D
BE=DF

∴△ABE≌△ADF(SAS),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴EF=AE=2,
∵BE=DF,BC=CD,
∴BC-BE=CD-DF,
即CE=CF,
∴△CEF是等腰直角三角形,
∴EC=
2
2
EF=
2
2
×2=
2


(2)证明:∵∠AGC=120°,
∴∠AGF=180°-∠AGC=180°-120°=60°,
又∵△AEF是等边三角形,(已证)
∴∠AEF=60°,
∴点A、E、G、F四点共圆,
∴∠AGE=∠AFE=60°,
∴∠CGE=∠AGC-∠AGE=120°-60°=60°,
延长GE交AB的延长线于H,
∵AB∥CD,
∴∠H=∠CGE=60°,
∴∠H=∠AGF,
又∵∠GAF+∠EAG=∠EAF=60°,
∠HAE+∠EAG=∠GAB=60°,
∴∠GAF=∠HAE,
在△AFG和△AEH中,
∠H=∠AGF
∠GAF=∠HAE
AE=AF

∴△AFG≌△AEH(AAS),
∴AG=AH,FG=EH,
∵∠AGE=60°,
∴△AGH是等边三角形,
∵AH=GH=EG+EH=EG+FG,
即AG=EG+FG.