早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A、B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.给出如下四个命题:①对于给定

题目详情
定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A、B为常数),使得f(x)≥g(x)对一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.给出如下四个命题:
①对于给定的函数f(x),其承托函数可能不存在,也可能有无数个;
②定义域和值域都是R的函数f(x)不存在承托函数;
③g(x)=2x为函数f(x)=|3x|的一个承托函数;
g(x)=
1
2
x为函数f(x)=x2的一个承托函数.
其中正确的命题有______.
▼优质解答
答案和解析
①如f(x)=sinx,则g(x)=B(B<-1)就是它的一个承托函数,且有无数个,再如y=tanx.y=lgx就没有承托函数,∴命题①正确;
②f(x)=2x+3的定义域和值域都是R,存在一个承托函数y=2x+1,故命题②不正确;
③令F(x)═|3x|-2x=
x   x≥0
−5x    x<0

可见在x≥0时,函数F(x)单调递增,最小值F(0)=0,
在x<0时,函数F(x)单调递减,最小值大于F(0)=0,
∴F(x)≥0在R上恒成立,符合定义
∴命题③正确;
④x=1时,g(1)=
1
2
,f(1)=1,显然g(1)<f(1),
当x=
1
4
时,g(
1
4
)=
1
8
,f(
1
4
)=
1
16
,显然g(
1
4
)>f(
1
4
),
命题④不正确.
故答案为:①③
看了 定义在实数集R上的函数f(x...的网友还看了以下: