早教吧作业答案频道 -->数学-->
已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x(x>0)(1)若函数h(x)=g(x)-m有零点,求m的取值范围(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根
题目详情
已知函数f(x)=-x^2+2ex+m-1,g(x)=x+(e^2)/x (x>0)(1)若函数h(x)=g(x)-m有零点,求m的取值范围(2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实根
▼优质解答
答案和解析
(1)方法一:∵g(x)=x+e^2/x ≥2e^2=2e,等号成立的条件是x=e.
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:解方程由g(x)=m,得x^2-mx+e^2=0.
此方程有大于零的根,
故 m/2 >0
△=m^2-4e^2≥0 ,
等价于 m>0
m≥2e或m≤-2e ,
故m≥2e.
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,
即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,
作出g(x)=x+e^2/x (x>0)的图象,
∵f(x)=-x^2+2ex+m-1
= --(x-e)^2+m-1+e^2,
其对称轴为x=e,开口向下,最大值为m-1+e^2,
故当m-1+e^2>2e,
即m>-e^2+2e+1时,
g(x)与f(x)的图象有两个不同的交点,
即g(x)-f(x)=0有两个相异的实根,
∴m的取值范围是:(-e^2+2e+1,+∞).
故g(x)的值域是[2e,+∞),
因而只需m≥2e,则g(x)=m就有实根.
故m的取值范围是{m|m≥2e}.
方法二:解方程由g(x)=m,得x^2-mx+e^2=0.
此方程有大于零的根,
故 m/2 >0
△=m^2-4e^2≥0 ,
等价于 m>0
m≥2e或m≤-2e ,
故m≥2e.
故m的取值范围是{m|m≥2e}.
(2)若g(x)-f(x)=0有两个相异的实根,
即g(x)=f(x)中,函数g(x)与f(x)的图象有两个不同的交点,
作出g(x)=x+e^2/x (x>0)的图象,
∵f(x)=-x^2+2ex+m-1
= --(x-e)^2+m-1+e^2,
其对称轴为x=e,开口向下,最大值为m-1+e^2,
故当m-1+e^2>2e,
即m>-e^2+2e+1时,
g(x)与f(x)的图象有两个不同的交点,
即g(x)-f(x)=0有两个相异的实根,
∴m的取值范围是:(-e^2+2e+1,+∞).
看了 已知函数f(x)=-x^2+...的网友还看了以下:
高一的两角和余差的正余玹sin105sin60-cos105cos1201.cos60是多少2.s 2020-04-11 …
陈文灯《复习指南》中定积分一道计算题·设函数f(x),g(x)满足f'(x)=g(x),g'(x) 2020-04-26 …
用科学计数法2560纳米=?cm0.00256分米=?微米25.6cm=?纳米[(x+1)(x+2 2020-05-14 …
设f(x)=[g(x)-e^(-x)]/x(x不等于0)0(x=0),其中g(x)是有二阶连续函数 2020-05-17 …
函数y=(x-1)的0次方的定义域是 2020-05-23 …
函数y=(x-2)的0次方+x-1的算术平方根中,x的取值范围是. 2020-06-06 …
如图1所示,物体A重为16N置于水平桌面上,在拉力F的作用下,5s内匀速直线运动了0.5m.图2是 2020-06-14 …
若代数式(x-2)的0次方+(y+1)的-2次方有意义,则x,y的取值范围是 2020-06-27 …
诺x+3的绝对值与g-1的绝对值,互为相反数,求x+g的值要正确格式 2020-06-29 …
物体以初速为24m/s从地面竖直向上抛出,所受空气阻力衡为G的0.2倍求1)物体上升最大高度及上升 2020-07-05 …