早教吧 育儿知识 作业答案 考试题库 百科 知识分享

A为n阶矩阵,A^2=A,E为单位矩阵,证明r(A)+r(A-E)=n

题目详情
A为n阶矩阵,A^2=A,E为单位矩阵,证明r(A)+r(A-E)=n
▼优质解答
答案和解析
因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程
Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;
又由R(A)+R(B)>=R(A+B);立刻可得R(A)+R(A-E)=R(A)+R(E-A)>=R(A+E-A)=R(E)=n;所以R(A)+R(A-E)=n.