早教吧作业答案频道 -->其他-->
(2013•成都)如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A
题目详情
(2013•成都)如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;
(i)当点P与A、B两点不重合时,求
的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;
(i)当点P与A、B两点不重合时,求
DP |
PQ |
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
▼优质解答
答案和解析
(1)证明:∵BD⊥BE,
∴∠1+∠2=180°-90°=90°,
∵∠C=90°,
∴∠2+∠E=180°-90°=90°,
∴∠1=∠E,
∵在△ABD和△CEB中,
,
∴△ABD≌△CEB(AAS),
∴AB=CE,
∴AC=AB+BC=AD+CE;
(2)(i)如图,过点Q作QF⊥BC于F,
则△BFQ∽△BCE,
∴
=
,
即
=
,
∴QF=
BF,
∵DP⊥PQ,
∴∠APD+∠FPQ=180°-90°=90°,
∵∠APD+∠ADP=180°-90°=90°,
∴∠ADP=∠FPQ,
又∵∠A=∠PFQ=90°,
∴△ADP∽△FPQ,
∴
=
,
即
=
,
∴5AP-AP2+AP•BF=3•
BF,
整理得,(AP-BF)(AP-5)=0,
∵点P与A,B两点不重合,
∴AP≠5,
∴AP=BF,
由△ADP∽△FPQ得,
=
,
∴
=
;
(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.
由(2)(i)可知,QF=
AP.
当点P运动至AC中点时,AP=4,∴QF=
.
∴BF=QF×
=4.
在Rt△BFQ中,根据勾股定理得:BQ=
∴∠1+∠2=180°-90°=90°,
∵∠C=90°,
∴∠2+∠E=180°-90°=90°,
∴∠1=∠E,
∵在△ABD和△CEB中,
|
∴△ABD≌△CEB(AAS),
∴AB=CE,
∴AC=AB+BC=AD+CE;
(2)(i)如图,过点Q作QF⊥BC于F,
则△BFQ∽△BCE,
∴
BF |
BC |
QF |
CE |
即
BF |
3 |
QF |
5 |
∴QF=
5 |
3 |
∵DP⊥PQ,
∴∠APD+∠FPQ=180°-90°=90°,
∵∠APD+∠ADP=180°-90°=90°,
∴∠ADP=∠FPQ,
又∵∠A=∠PFQ=90°,
∴△ADP∽△FPQ,
∴
AD |
PF |
AP |
QF |
即
3 |
5−AP+BF |
AP |
QF |
∴5AP-AP2+AP•BF=3•
5 |
3 |
整理得,(AP-BF)(AP-5)=0,
∵点P与A,B两点不重合,
∴AP≠5,
∴AP=BF,
由△ADP∽△FPQ得,
DP |
PQ |
AP |
QF |
∴
DP |
PQ |
3 |
5 |
(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.
由(2)(i)可知,QF=
5 |
3 |
当点P运动至AC中点时,AP=4,∴QF=
20 |
3 |
∴BF=QF×
3 |
5 |
在Rt△BFQ中,根据勾股定理得:BQ=
相关问答 |
看了 (2013•成都)如图,点B...的网友还看了以下:
24 (a+b)/(c+d)=(√a^2+b^2)/√ (c^2+d^2)成立证明:(1)a/b= 2020-05-14 …
一个栈的入栈序列是a b c d e,则栈不可能的输出序列是( )。A.e d c b a B.d 2020-05-23 …
设有关系R(A,B,C)和S(A,D,E,F),若将关系代数表达式:用SQL语言的查询语句表示,则有 2020-05-23 …
y=(AB+AB非+A非B)(A+B+D+A非B非D非) 2020-06-12 …
左下图为一阶梯截面,老鼠沿两边A-B-D的路线逃跑,猫同时沿阶梯(折线)A-C-D的路线去追,结果 2020-06-20 …
已知,a‖b,c‖d,若由此得出b‖d,则a和c应满足的关系是?已知,a‖b,c‖d,若由此得出b 2020-07-06 …
已知a、b的阳离子和c、d的阴离子电子层结构相同,且原子半径a>b,阴离子所带电荷数c>d,则它们的 2020-11-26 …
在三角形ABC和三角形A'B'C'中CD,C'D'分别是高,并且AC=A'C;,CD=C'D',∠A 2020-11-28 …
请问谁知道用matlab求解多元超越方程组的方法或思路或函数不?形如:a*(1+a+a^3+d+d^ 2020-12-14 …
设a.b.c.d.为非零实数,求矩阵A=abcd-b设a.b.c.d.为非零实数,求矩阵A=abcd 2020-12-27 …