早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•成都)如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;(i)当点P与A

题目详情
(2013•成都)如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.
(1)求证:AC=AD+CE;
(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE于点Q;
(i)当点P与A、B两点不重合时,求
DP
PQ
的值;
(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)
▼优质解答
答案和解析
(1)证明:∵BD⊥BE,
∴∠1+∠2=180°-90°=90°,
∵∠C=90°,
∴∠2+∠E=180°-90°=90°,
∴∠1=∠E,
∵在△ABD和△CEB中,
∠1=∠E
∠A=∠C=90°
AD=BC

∴△ABD≌△CEB(AAS),
∴AB=CE,
∴AC=AB+BC=AD+CE;

(2)(i)如图,过点Q作QF⊥BC于F,
则△BFQ∽△BCE,
BF
BC
=
QF
CE

BF
3
=
QF
5

∴QF=
5
3
BF,
∵DP⊥PQ,
∴∠APD+∠FPQ=180°-90°=90°,
∵∠APD+∠ADP=180°-90°=90°,
∴∠ADP=∠FPQ,
又∵∠A=∠PFQ=90°,
∴△ADP∽△FPQ,
AD
PF
=
AP
QF

3
5−AP+BF
=
AP
QF

∴5AP-AP2+AP•BF=3•
5
3
BF,
整理得,(AP-BF)(AP-5)=0,
∵点P与A,B两点不重合,
∴AP≠5,
∴AP=BF,
由△ADP∽△FPQ得,
DP
PQ
=
AP
QF

DP
PQ
=
3
5


(ii)线段DQ的中点所经过的路径(线段)就是△BDQ的中位线MN.
由(2)(i)可知,QF=
5
3
AP.
当点P运动至AC中点时,AP=4,∴QF=
20
3

∴BF=QF×
3
5
=4.
在Rt△BFQ中,根据勾股定理得:BQ=
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号