早教吧作业答案频道 -->数学-->
如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.(1)证明:△DEO≌△BFO;(2)若DB=2,AD=1,AB=5,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的
题目详情
如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.
(1)证明:△DEO≌△BFO;
(2)若DB=2,AD=1,AB=
,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.
(1)证明:△DEO≌△BFO;
(2)若DB=2,AD=1,AB=
5 |
▼优质解答
答案和解析
(1)证明:在平行四边形ABCD中,CD∥AB,
∴∠CDO=∠ABO,∠DEO=∠BFO.
又∵点O是平行四边形的对称中心,
∴OD=OB.
∴△DEO≌△BFO.
(2)∵在△ABD中,DB=2,AD=1,AB=
,
∴DB2+AD2=AB2.
∴△ABD是直角三角形,且∠ADB=90°
∵OD=OB=
DB=1,
∴AD=OD=1.
∴△OAD是等腰直角三角形,
∴∠AOD=45°.
当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,
∴∠AOE=90°
∵△DEO≌△BFO,
∴OE=OF
又∵点O是平行四边形的对称中心,
∴OA=OC
∴四边形AECF是平行四边形
∴四边形AECF是菱形.
∴∠CDO=∠ABO,∠DEO=∠BFO.
又∵点O是平行四边形的对称中心,
∴OD=OB.
∴△DEO≌△BFO.
(2)∵在△ABD中,DB=2,AD=1,AB=
5 |
∴DB2+AD2=AB2.
∴△ABD是直角三角形,且∠ADB=90°
∵OD=OB=
1 |
2 |
∴AD=OD=1.
∴△OAD是等腰直角三角形,
∴∠AOD=45°.
当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,
∴∠AOE=90°
∵△DEO≌△BFO,
∴OE=OF
又∵点O是平行四边形的对称中心,
∴OA=OC
∴四边形AECF是平行四边形
∴四边形AECF是菱形.
看了 如图,点O是平行四边形ABC...的网友还看了以下:
如图,已知点(1,3)在函数Y=X/K(X》0)的图象上,矩形ABCD的边BC在X轴上,点E是对角 2020-04-27 …
初二数学:E(-4,2)F(-1,1),以原点0为位似中心,按比例尺1:2把△EFO缩小,点E的对 2020-05-13 …
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0, 2020-06-14 …
在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EF 2020-07-21 …
如图,小刚面对黑板坐在椅子上.若把黑板看作矩形,其上的一个字看作点E,过点E的该矩形的高为BC,把 2020-07-21 …
在平面直角坐标系中,已知点E(−4,2),F(−2,−2),以原点O为位似中心,相似比为12,把△ 2020-08-02 …
如图,在矩形ABCD中,已知AB=3AD,E,F为AB的两个三等分点,AC,DF交于点G;(I)建立 2020-11-02 …
在平面直角坐标系中,点A、B分别在x轴、y轴上,点A与点C关于y轴对称,点E是线段AC上的点(点E不 2020-11-11 …
(2012•威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1) 2020-11-13 …
如图,小刚面对黑板坐在椅子上.若把黑板看作矩形,其上的一个字看作点E,过点E的该矩形的高为BC,把小 2020-12-05 …