早教吧作业答案频道 -->数学-->
如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如
题目详情
如图1,2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边的中点,N为AD边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是______;
②请证明你的上述猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的结论.
(1)如图1,当点E在AB边的中点,N为AD边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是______;
②请证明你的上述猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的结论.
▼优质解答
答案和解析
(1)①DE=EF;
②证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,
∴DN=EB=AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF;
(2)DE=EF,
证明:连接NE,在DA边上截取DN=EB,
∵四边形ABCD是正方形,DN=EB,
∴AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF.
②证明:∵四边形ABCD是正方形,N,E分别为AD,AB的中点,
∴DN=EB=AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF;
(2)DE=EF,
证明:连接NE,在DA边上截取DN=EB,
∵四边形ABCD是正方形,DN=EB,
∴AN=AE,
∴△AEN为等腰直角三角形,
∴∠ANE=45°,
∴∠DNE=180°-45°=135°,
∵BF平分∠CBM,AN=AE,
∴∠EBF=90°+45°=135°,
∴∠DNE=∠EBF,
∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,
∴∠NDE=∠BEF,
∴△DNE≌△EBF,
∴DE=EF.
看了 如图1,2,四边形ABCD是...的网友还看了以下:
三角形ABC内接于圆O AD平分角BAC 交直线BC于点E 交圆o点D 求证AB乘AC=AD乘AE 2020-06-27 …
四道初中几何题,请详细说明解法,(图)1.如图,按规定,一块模版中AB,CD的延长线相交成85度角 2020-06-27 …
如果对的话加赏金51.如果角1和角2互余,角1是角2的余角,角2是角1的余角,用等式表示是.2.还 2020-06-29 …
(2014•黄石)AD是△ABC的中线,将BC边所在直线绕点D顺时针旋转α角,交边AB于点M,交射 2020-07-16 …
如图所示的模板按规定abcd的延长线相交成80°的角,因交点不在板上,不便测量,工人师傅测得∠BE 2020-07-17 …
如图,在三角形ABC中,BA1,CA1分别是角ABC及外角角ACD的角平分线(1)求证:角A1=二 2020-07-22 …
已知角一与角二互为余角,角一和角三互为补角,角二与角三的和等于周交的三分之一,求角一、角二、角三的 2020-07-30 …
已知角1是锐角,角2是钝角,角3是直角,请问角1,角2,角3的大小关系是().A角1>角2>角3, 2020-07-30 …
如图在四边形ABCD中,角B=∠D=90角a比角c=1比2AB=2CD=1四边形ABCD是一个直角 2020-08-01 …
已知三角形ABC.(1)如图14,若P点是角ABC和角ACB的角平分线的交点,点E是外角角MBC,角 2020-11-27 …